[1] BEER M, FERSON S, KREINOVICH V. Imprecise probabilities in engineering analyses[J]. Mechanical Systems and Signal Processing, 2013, 37(1):4-29. [2] MELCHERS R E, BECK A T. Structural reliability analysis and prediction[M]. New York:John Wiley & Sons, 2018. [3] SHAFER G. A mathematical theory of evidence[M]. Princeton:Princeton University Press, 1976. [4] KLIR G J. Generalized information theory:Aims, results, and open problems[J]. Reliability Engineering & System Safety, 2004, 85(1/3):21-38. [5] ZIMMERMANN H J. Fuzzy set theory-and its applications[M]. New York:Springer Science & Business Media, 2011. [6] BEN-HAIM Y, ELISHAKOFF I. Convex Models of Uncertainty in Applied Mechanics[M]. Amsterdam:Elsevier, 1990. [7] OBERKAMPF W, HELTON J. Investigation of evidence theory for engineering applications[R]. Colorado:AIAA2002-1569, 2002. [8] 姜潮, 张旺, 韩旭.基于Copula函数的证据理论相关性分析模型及结构可靠性计算方法[J].机械工程学报, 2017, 53(16):199-209. JIANG Chao, ZHANG Wang, HAN Xu. A copula function based evidence theory model for correlation analysis and corresponding structural reliability method[J]. Journal of Mechanical Engineering, 2017, 53(16):199-209. [9] ZISSIMOS, P, MOURELATOS, ZHOU Jun. A design optimization method using evidence theory[J]. Journal of Mechanical Design, 2006, 128(4):901-908. [10] JINHAO Z, MI X, LIANG G, et al. An improved two-stage framework of evidence-based design optimization[J]. Structural and Multidisciplinary Optimization, 2018, 58(4):1673-1693. [11] 苏瑜, 唐和生, 薛松涛, 等.基于证据理论的结构非概率可靠性拓扑优化设计[J]. 中国科学:技术科学, 2019, 49(3):82-92. SU Yu, TANG Hesheng, XUE Songtao, et al. Approach of non-probabilistic reliability topology optimization using evidence theory[J]. Scientia Sinica Technologica, 2019, 49(3):82-92. [12] ZHANG D, PENG Z, NING G, et al. Positioning accuracy reliability of industrial robots through probability and evidence theories[J]. Journal of Mechanical Design, 2020, 143(1):1-30. [13] TONON F, BERNARDINI A, MAMMINO A. Determination of parameters range in rock engineering by means of random set theory[J]. Reliability Engineering & System Safety, 2000, 70(3):241-261. [14] BAE H R, GRANDHI R V, CANFIELD R A. Epistemic uncertainty quantification techniques including evidence theory for large-scale structures[J]. Computers & Structures, 2004, 82(11-16):1101-1112. [15] SALEHGHAFFARI S, RAIS-ROHANI M, MARIN E B, et al. Optimization of structures under material parameter uncertainty using evidence theory[J]. Engineering Optimization, 2012, 45(9):1027-1041. [16] PARK I, GRANDHI R V. Quantification of model-form and parametric uncertainty[J]. Structural Safety, 2012, 39:44-51. [17] BAE H R, GRANDHI R V, CANFIELD R A. An approximation approach for uncertainty quantification using evidence theory[J]. Reliability Engineering & System Safety, 2004, 86(3):215-225. [18] ZHANG Z, JIANG C, HAN X, et al. A response surface approach for structural reliability analysis using evidence theory[J]. Advances in Engineering Software, 2014, 69:37-45. [19] CAO L X, LIU J, HAN X, et al. An efficient evidence-based reliability analysis method via piecewise hyperplane approximation of limit state function[J]. Structural and Multidisciplinary Optimization, 2018, 58(1):201-213. [20] JIANG C, ZHANG Z, HAN X, et al. A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty[J]. Computers & Structures, 2013, 129:1-12. [21] ZHANG Z, JIANG C, WANG G G, et al. First and second order approximate reliability analysis methods using evidence theory[J]. Reliability Engineering & System Safety, 2015, 137:40-49. [22] WANG C, MATTHIES H G. Epistemic uncertainty-based reliability analysis for engineering system with hybrid evidence and fuzzy variables[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355:438-455. [23] YIN S W, YU D J, LUO Z, et al. An arbitrary polynomial chaos expansion approach for response analysis of acoustic systems with epistemic uncertainty[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332:280-302. [24] 姜潮, 张哲, 韩旭, 等.一种基于证据理论的结构可靠性分析方法[J]. 力学学报, 2013, 45(1):103-115. JIANG Chao, ZHANG Zhe, HAN Xu, et al. An evidence-theory-based reliability analysis method for uncertain structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1):103-115. [25] YANG X, LIU Y, MA P. Structural reliability analysis under evidence theory using the active learning kriging model[J]. Engineering Optimization, 2017, 49(11):1922-1938. [26] YANG X F, LIU Z Q, CHENG X. An enhanced active learning Kriging model for evidence theory-based reliability analysis[J]. Structural and Multidisciplinary Optimization, 2021, 64:2165-2181. [27] DEMPSTER A P. The Dempster-shafer calculus for statisticians[J]. International Journal of Approximate Reasoning, 2008, 48(2):365-377. [28] HELTON J C, JOHNSON J D, OBERKAMPF W L, et al. A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(37-40):3980-3998. [29] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492. [30] LOPHAVEN S N, NIELSEN H B, SØNDERGAARD J. DACE:A Matlab kriging toolbox[M]. Denmark:Citeseer, 2002. [31] ELIASON S R. Maximum likelihood estimation:Logic and practice[M]. Newbury Park, CA:Sage, 1993. [32] BROWNE M W. Cross-validation methods[J]. Journal of Mathematical Psychology, 2000, 44(1):108-132. [33] ECHARD B, GAYTON N, LEMAIRE M. AK-MCS:An active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2):145-154. [34] GUO J, DU X P. Sensitivity analysis with mixture of epistemic and aleatory uncertainties[J]. AIAA Journal, 2007, 45(9):2337-2349. |