机械工程学报 ›› 2024, Vol. 60 ›› Issue (18): 183-194.doi: 10.3901/JME.2024.18.183
刘凯豹, 戴宇成, 刘昌会, 赵佳腾
收稿日期:
2023-11-23
修回日期:
2024-04-23
出版日期:
2024-09-20
发布日期:
2024-11-15
作者简介:
刘凯豹,男,1996年出生。主要研究向是新型热管技术。E-mail:13645548691@163.com基金资助:
LIU Kaibao, DAI Yucheng, LIU Changhui, ZHAO Jiateng
Received:
2023-11-23
Revised:
2024-04-23
Online:
2024-09-20
Published:
2024-11-15
摘要: 相变储热是储能领域的重要组成部分,它可以解决热能供求在时间和空间上不匹配、以及间歇性、波动性等问题。由于相变材料导热系数较低,限制了其大规模应用于储热领域。热管与相变材料耦合是有效强化相变储热的方法。总结热管与相变材料的不同耦合方式以及在不同应用领域的研究进展,分析热管与相变材料不同耦合方式的优势和潜力。研究发现相变材料与热管的耦合能够强化储热系统储/放热性能,另外相变材料与热管在不同位置耦合能够实现不同的功能。但是相变材料与热管耦合传热机理还不明晰,还需增强基于热管的储热系统对动态工况的适应能力,拓宽优化其应用范围。
中图分类号:
刘凯豹, 戴宇成, 刘昌会, 赵佳腾. 相变材料/热管耦合储热技术在不同领域应用研究进展[J]. 机械工程学报, 2024, 60(18): 183-194.
LIU Kaibao, DAI Yucheng, LIU Changhui, ZHAO Jiateng. Research Progress on the Application of Phase Change Material/Heat Pipe Coupled Heat Storage Technology in Different Fields[J]. Journal of Mechanical Engineering, 2024, 60(18): 183-194.
[1] 杨琳,高宏. 国外新型储能产业政策发展动态及对我国的启示[J]. 中国工业和信息化,2022(8):18-22. YANG Lin,GAO Hong. Policy development of new-type energy storage industry abroad and its enlightenment to China[J]. China Industry & Information Technology,2022(8):18-22. [2] 姜竹,邹博杨,丛琳,等. 储热技术研究进展与展望[J]. 储能科学与技术,2022,11(9):2746-2771. JIANG Zhu,ZOU Boyang,CONG Lin,et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology,2022,11(9):2746-2771. [3] 李拴魁,林原,潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术,2022,11(5):1551-1562. LI Shuankui,LIN Yuan,PAN Feng. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology,2022,11(5):1551-1562. [4] TAO Yubing,HE Yaling. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews,2018,93:245-259. [5] ZHANG Xuan,ZHANG Chengbin,CHEN Yongpin. Role of latent heat storage in thermal performance of an axially grooved heat pipe[J]. International Journal of Heat and Mass Transfer,2022,198:123415. [6] METTAWEE E B S,ASSASSA G M. R. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy,2007,81(7):839-845. [7] WROBEL R,MCGLEN R J. Heat pipes in thermal management of electrical machines-A review[J]. Thermal Science and Engineering Progress,2021,26:101053. [8] 周跃国. 脉动热管启动及运行特性的可视化实验研究[D]. 重庆:重庆大学,2010. ZHOU Yueguo. Visual experimental study on start-up and operation characteristics of pulsating heat pipe[D]. Chongqing:Chongqing University,2010. [9] JEGADHEESWARAN S,POHEKAR S D. Performance enhancement in latent heat thermal storage system:A review[J]. Renewable & Sustainable Energy Reviews,2009,13(9):2225-2244. [10] IBRAHIM N I. hancement of phase change materials for thermal energy storage applications:a critical review[J]. Renewable & Sustainable Energy Reviews,2017,74:26-50. [11] 林文珠,凌子夜,方晓明,等. 相变储热的传热强化技术研究进展[J]. 化工进展,2021,40(9):5166-5179. LIN Wenzhu,LING Ziye,FANG Xiaoming,et al. Recent progress on Heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress,2021,40(9):5166-5179. [12] 张强. 低温热管技术在煤矿回风余热回收中的应用与研究[J]. 机械管理开发,2020,35(8):154-156,180. ZHANG Qiang. Application and research of low temperature heat pipe technology in coal mine return air waste heat recovery[J]. Mechanical Management and Development,2020,35(8):154-156,180. [13] 胡崇举,余大利,何梅生,等. 超高温锂热管设计与热输运性能分析[J]. 核动力工程,2022,43(3):21-27. HU Chongju,YU Dali,HE Meisheng,et al. Design and heat transfer performance analysis of ultra-high temperature lithium heat pipe[J]. Nuclear Power Engineering,2022,43(3):21-27. [14] 肖鑫,冯泽,王云峰,等. 有机相变材料强化及耦合优化电池热管理系统的研究进展[J]. 复合材料学报, 2023,40(7):3795-3811. XIAO Xin,FENG Ze,WANG Yunfeng,et al. Recent progress in enhancement of physical properties of organic phase change materials and optimization of coupling thermal management of batteries[J]. Acta Materiae Compositae Sinica,2023,40(7):3795-3811. [15] 张宇迪,章学来,纪珺,等. 基于热管技术的相变材料强化传热技术进展[J]. 功能材料,2019,50(1):1056-1066. ZHANG Yudi,ZHANG Xuelai,JI Jun,et al. Advances in heat transfer technology based on heat pipe technology with enhanced heat transfer from phase change materials[J]. Journal of Functional Materials,2019,50(1):1056-1066. [16] HAYAT M A,ALI H M,JANJUA M M,et al. Phase change material/heat pipe and Copper foam-based heat sinks for thermal management of electronic systems[J]. Journal of Energy Storage,2020,32:101971. [17] QU Jie,KE Zhiqi,ZUO Anhao,et al. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application[J]. International Journal of Heat and Mass Transfer,2019,129:773-782. [18] WANG Qingchao,RAO Zhonghao,HUO Yutao,et al. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system[J]. International Journal of Thermal Sciences,2016,102:9-16. [19] HU Chengzhi,LI Hongyang,WANG Ye,et al. Experimental and numerical investigations of lithium-ion battery thermal management using flat heat pipe and phase change material[J]. Journal of Energy Storage,2022,55:105743. [20] FENG Renlang,HUANG Peifeng,TANG Ziyi,et al. Experimental and numerical study on the cooling performance of heat pipe assisted composite phase change material-based battery thermal management system[J]. Energy Conversion and Management,2022,272:116359. [21] LENG Ziyu,YUAN Yanping,CAO Xiaoling,et al. Heat pipe/phase change material coupled thermal management in Li-ion battery packs:optimization and energy-saving assessment[J]. Applied Thermal Engineering,2022,208:118211. [22] PUTRA N,SANDI A F,ARIANTARA B,et al. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles[J]. Case Studies in Thermal Engineering,2020,21:100655. [23] ZHAO Jiateng,LÜ Peitao,RAO Zhonghao. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science,2017,82:182-188. [24] WU Weixiong,YANG Xiaoqing,ZHANG Guoqing,et al. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management,2017,138:486-492. [25] ABBAS S,RAMADAN Z,PARK C W. Thermal performance analysis of compact-type simulative battery module with paraffin as phase-change material and flat plate heat pipe[J]. International Journal of Heat and Mass Transfer,2021,173:121269. [26] HUANG Qiqiu,LI Xinxi,ZHANG Guoqing,et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J]. Applied Thermal Engineering,2018,141:1092-1100. [27] HOU Guiqi,LIU Xianqing,HE Wenxuan,et al. An equivalent circuit model for battery thermal management system using phase change material and liquid cooling coupling[J]. Journal of Energy Storage,2022,55:105834. [28] YAMADA T,KOSHIYAMA T,YOSHIKAWA M,et al. Analysis of a lithium-ion battery cooling system for electric vehicles using a phase-change material and heat pipes[J]. Journal of Thermal Science and Technology,2017,12(1):JTST0011-JTST0011. [29] HATA H,WADA S,YAMADA T,et al. Performance evaluation of a battery-cooling system using phase-change materials and heat pipes for electric vehicles under the short-circuited battery condition,Journal of Thermal Science and Technology,2018,13(2):JTST0024-JTST0024. [30] CAO Jiahao,WU Yi,LING Ziye,et al. Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials[J]. Applied Thermal Engineering,2021,199:117562. [31] MADHAV H V,RAGHAVENDRA V,KUMAR P,et al. Development of a canister module for PCM coupled heat pipe in spacecraft thermal management[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology,2021,11(11):1804-1815. [32] PAN Chunjian,VERMAAK N,WANG Xingchao,et al. A fast dynamic model for a large scale heat pipe embedded latent heat thermal energy storage system for optimal sizing and control[J]. Journal of Energy Storage,2022,51:104489. [33] 李嘉琪,刁彦华,赵耀华,等. 新型平板热管相变换热器储放能过程的研究[J]. 工程热物理学报,2012,33(11):1932-1935. LI Jiaqi,Diao Yanhua,ZHAO Yaohua,et al. Experiment study on heat transfer characteristics of the melting and solidification process for a new type of flat Pipe/PCM thermal storage system[J]. Journal of Engineering Thermophysics,2012,33(11):1932-1935. [34] DIAO Yanhua,KANG Yameng,LIANG Liang,et al. Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays[J]. Energy,2017,138:929-941. [35] DIAO Yanhua.,WANG Shun,Li Chengzhan,et al. Experimental study on the heat transfer characteristics of a new type flat micro heat pipe heat exchanger with latent heat thermal energy storage[J]. Experimental Heat Transfer,2017,30(2):91-111. [36] DIAO Yanhua,WANG Shun,ZHAO Yaohua,et al. Experimental study of the heat transfer characteristics of a new-type flat micro-heat pipe thermal storage unit[J]. Applied Thermal Engineering,2015,89:871-882. [37] 王泽宇,刁彦华,赵耀华,等. 平板微热管阵列式太阳能空气集热-蓄热一体化装置换热特性研究[J]. 工程热物理学报,2017,38(3):625-634. WANG Zeyu,DIAO Yanhua,ZHAO Yaohua,et al. Experimental study on thermal characteristics of an integrated solar air collector-storage based on flat micro-heat pipe arrays[J]. Journal of Engineering Thermophysics,2017,38(3):625-634. [38] DIALLO T M O,YU Min,ZHOU Jinzhi,et al. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger[J]. Energy,2019,167:866-888. [39] DIAO Yaohua,QIN Qian,WANG Zeyu,et al. Numerical and experimental investigation on a latent heat thermal storage device featuring flat micro heat pipe arrays with offset strip fins[J]. Journal of Energy Storage,2021,41:102880. [40] WANG Tengyue,ZHAO Yaohua,DIAO Yanhua,et al. Experimental investigation of a novel thermal storage solar air heater (TSSAH) based on flat micro-heat pipe arrays[J]. Renewable Energy,2021,173:639-651. [41] KHALILMOGHADAM P,RAJABI-GHAHNAVIEH A,SHAFII M B. A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe[J]. Renewable Energy,2021,163:2115-2127. [42] SHOEIBI S,MIRJALILY S A A,KARGARSHARIFABAD H,et al. A comprehensive review on performance improvement of solar desalination with applications of heat pipes[J]. Desalination,2022,540:115983. [43] XIE Guo,CHEN Wenlong,YAN Tiantong,et al. Three-effect tubular solar desalination system with vacuum operation under actual weather conditions[J]. Energy Conversion and Management,2020,205:112371. [44] SADRIPOUR S,CHAMKHA A J. The effect of nanoparticle morphology on heat transfer and entropy generation of supported nanofluids in a heat sink solar collector[J]. Thermal Science and Engineering Progress,2019,9:266-280. [45] EBRAHIMI A,HOSSEINI M J,RANJBAR A A,et al. Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe[J]. Renewable Energy,2019,138:378-394. [46] CHOPRA K.,PATHAK A K,TYAGI V V,et al. Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system:An experimental assessment[J]. Energy Conversion and Management,2020,203:112205. [47] FAEGH M,SHAFII M B. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes[J]. Desalination,2017,409:128-135. [48] MAKKI A,OMER S,SU Y H,et al. Numerical investigation of heat pipe-based photovoltaic- thermoelectric generator (HP-PV/TEG) hybrid system[J]. Energy Conversion and Management,2016,112:274-287. [49] ALMSATER S,SAMAN W,BRUNO F. Performance enhancement of high temperature latent heat thermal storage systems using heat pipes with and without fins for concentrating solar thermal power plants[J]. Renewable Energy,2016,89:36-50. [50] RANJAN T B,NATH S,BHANJA D. Performance enhancement of a dual heat pipe array based evacuated tube solar water heater for north eastern India climatic condition:a numerical approach[J]. Applied Thermal Engineering,2022,213:118597. [51] MODJINOU M,JI J,YUAN W Q,et al. Performance comparison of encapsulated PCM PV/T,microchannel heat pipe PV/T and conventional PV/T systems[J]. Energy,2019,166:1249-1266. [52] 徐笑锋,章学来,张宇迪,等. 基于双温储能热管的余热回收装置系统设计与试验研究[J]. 流体机械,2018,46(9):59-63. XU Xiaofeng,ZHANG Xuelai,ZHANG Yudi,et al. System design and experimental research of waste heat recovery device based on dual temperature energy storage heat pipe[J]. Fluid Machinery,2018,46(9):59-63. [53] AMINI A,MILLER J,JOUHARA H. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers[J]. Energy,2017,136:163-172. [54] 徐珩. 动力型分离式热管在蓄能装置上的应用研究.[D]. 南昌:南昌大学,2018. XU Yan. Research and application of power type separated heat pipe on energy storage equipment[D]. Nanchang:Nanchang University,2018. [55] 周鑫晨,章学来,韩兴超,等. 脉动热管/相变储能耦合技术研究进展[J]. 现代化工,2018,38(12):58-61,63. ZHOU Xinchen,ZHANG Xuelai,HAN Xingchao,et al. Review on coupling technology between pulsating heat pipe and phase change energy storage[J]. Modern Chemical Industry,2018,38(12):58-61,63. [56] ZHANG Wencan,QIU Jieyu,YIN Xiuxing,et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering,2020,165:114571. [57] BHAGWAT V V,ROY S,DAS B,et al. Performance of finned heat pipe assisted parabolic trough solar collector system under the climatic condition of North East India[J]. Sustainable Energy Technologies and Assessments,2021,45:101171. [58] KUSRINI E,AMIN M,ARIANTARA B,et al. Thermal Management of Electric Vehicle Batteries Using Heat Pipe and Phase Change Materials[J]. E3S Web of Conferences,2018,67:03034. [59] GAD R,MAHMOUD H,OOKAWARA S,et al. Energy,exergy,and economic assessment of thermal regulation of PV panel using hybrid heat pipe-phase change material cooling system[J]. Journal of Cleaner Production, 2022,364:132489. [60] TIAN Shen,YANG Qifan,HUI Na,et al. Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes[J]. Energy,2020,205:117987. [61] MALDONADO J M,VEREZ D,GRACIA D A,et al. Comparative study between heat pipe and shell-and-tube thermal energy storage[J]. Applied Thermal Engineering. 2021,192:116974. [62] WANG Zeyu,DIAO Yanhua,ZHAO Yaohua,et al. Visualization experiment and numerical study of latent heat storage unit using micro-heat pipe arrays:Melting process[J]. Energy,2022,246:123443. [63] ZHUANG Baoshan,DENG Wenjun,TANG Yong,et al. Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section[J]. International Communications in Heat and Mass Transfer,2019,100:42-50. [64] DIAO Yanhua,QI Naixin,WANG Zeyu,et al,Thermal performance analysis of a solar air collection–cascade storage system integrated with micro-heat pipe arrays,Solar Energy,2021,224:1271-1290. [65] LOHRASBI S,MIRY S Z,GORJI-BANDPY M,et al. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material[J]. International Journal of Hydrogen Energy,2017,42(10):6526-6546. [66] LIANG Lin,DIAO Yanhua,ZHAO Yanhua.,et al. Experimental and numerical investigations of latent thermal energy storage using combined flat micro-heat pipe array–metal foam configuration:Simultaneous charging and discharging[J]. Renewable Energy,2021,171:416-430. [67] QU Jie,ZUO Anhao,LIU Heng,et al. Three-dimensional oscillating heat pipes with novel structure for latent heat thermal energy storage application[J]. Applied Thermal Engineering,2021,187:116574. [68] WANG Zeyu,DIAO Yanhua,ZHAO Yanhua,et al. Compound parabolic concentrator solar air collection–storage system based on micro-heat pipe arrays[J]. Solar Energy,2020,207:743-758. [69] 陈忱,孙俊俊,朱庆勇. 相变材料耦合热管传热性能分析[J]. 节能,2021,40(11):36-40. CHEN Chen,SUN Junjun,ZHU Qingyong. Analysis of heat transfer performance of phase change materials coupled with heat pipe[J]. Energy Conservation,2021,40(11):36-40. [70] 胡仁林. 重力热管式中温相变储热器的基础实验研究[D]. 上海:上海交通大学,2014. HU Renlin. Basic experimental study of gravity heat pipe type medium temperature phase change heat reservoir[D]. Shanghai:Shanghai Jiao Tong University,2014. [71] HU Bowen,WANG Qian,LIU Zhenhua. Fundamental research on the gravity assisted heat pipe thermal storage unit (GAHP-TSU) with porous phase change materials (PCMs) for medium temperature applications[J]. Energy Conversion and Management,2015,89:376-386. [72] LIU Zhenhua,ZHENG Baochen,WANG Qian,et al. Study on the thermal storage performance of a gravity-assisted heat-pipe thermal storage unit with granular high-temperature phase-change materials[J]. Energy,2015,81:754-765. [73] LI Shuangfei,WANG Pingyang,LIU Zhenhua. A basic study on Thermosyphon-type thermal storage unit (TSU) using Nanofluid as the heat transfer medium[J]. Heat and Mass Transfer,2018,54(5):1427-1440. [74] SUN Hongli,LIN Borong,LIN Zhirong,et al. Experimental study on a novel flat-heat-pipe heating system integrated with phase change material and thermoelectric unit[J]. Energy,2019,189:116181. [75] 郭喆晨,徐俊,王行早,等. 基于一维/三维热模型的平板热管/液冷电池热管理系统优化设计[J]. 机械工程学报,2023,59(22):79-88. GUO Zhechen,XU Jun,WANG Xingzao,et al. Optimal design of flat heat pipe-liquid cooling battery thermal management system based on 1D/3D thermal model[J]. Journal of Mechanical Engineering,2023,59(22):79-88. [76] 陈泽宇,熊瑞,李世杰,等. 电动载运工具锂离子电池低温极速加热方法研究[J]. 机械工程学报,2021,57(4):113-120. CHEN Zeyu,XIONG Rui,LI Shijie,et al. Extremely fast heating method of the lithium-ion battery at cold climate for electric vehicle[J]. Journal of Mechanical Engineering,2021,57(4):113-120. |
[1] | 刘鑫, 张俊, 徐斌斌, 刘弘光, 赵万华. 激光辅助铣削过程的预热温度场调控方法研究[J]. 机械工程学报, 2024, 60(9): 218-228. |
[2] | 魏荣, 徐默然, 李常平, 李树健, 李鹏南. 电火花辅助铣削钛合金多能场建模及调控优化研究[J]. 机械工程学报, 2024, 60(9): 393-409. |
[3] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
[4] | 杨柳, 高天雄, 宋颜和, 孔祥东, 张世林. 基于田口法的比例电磁铁极靴结构优化研究[J]. 机械工程学报, 2024, 60(8): 329-336. |
[5] | 张行, 富宽, 陈铭浩, 李睿, 石新娜. 压差式多节串联管道机器人越障时动力学演化规律及减振分析[J]. 机械工程学报, 2024, 60(8): 348-359. |
[6] | 赵希坤, 李聪波, 杨勇, 吕岩, 姜书艳. 数据-机理混合驱动下考虑刀具柔性的柔性加工工艺参数能效优化方法[J]. 机械工程学报, 2024, 60(7): 236-248. |
[7] | 郭江, 潘博, 连佳乐, 杨哲, 刘欢, 高菲, 康仁科. 双面研磨技术研究现状与发展趋势[J]. 机械工程学报, 2024, 60(7): 266-288. |
[8] | 姜文涛, 刘晓明, 李培源, 陈海, 张煦松. 机械式真空快速切换开关机构多目标优化设计[J]. 机械工程学报, 2024, 60(6): 153-162. |
[9] | 周晨, 徐飞翔. 四轮独立转向车辆转向模式切换轨迹多目标优化方法研究[J]. 机械工程学报, 2024, 60(6): 306-320. |
[10] | 柴依扬, 张乐乐, 窦伟元, 张海峰. 基于并行NSGA-III算法的高速列车车体侧墙结构高维多目标优化[J]. 机械工程学报, 2024, 60(6): 321-333. |
[11] | 周祖意, 杨玉维, 齐文耀, 龚健超, 李照童. 腰部外骨骼机器人多刚-柔体动力学等效逆解方法研究及其性能优化综合[J]. 机械工程学报, 2024, 60(5): 107-118. |
[12] | 赵承伟, 张文豪, 龚天诚, 张逸云, 王长涛, 罗先刚. 平面光学元件超平整吸附装载的优化设计与分析[J]. 机械工程学报, 2024, 60(5): 241-248. |
[13] | 张鹏, 尹来容, 仝永刚, 黄龙. 基于间隙预测模型的自动铺带轨迹优化方法[J]. 机械工程学报, 2024, 60(5): 296-316. |
[14] | 高强, 王健, 张严, 郑旭阳, 吕昊, 殷国栋. 拓扑优化方法及其在运载工程中的应用与展望[J]. 机械工程学报, 2024, 60(4): 369-390. |
[15] | 纵怀志, 艾吉昆, 张军辉, 江磊, 谭树杰, 刘余贤, 苏琦, 徐兵. 基于拓扑优化和晶格填充的四足机器人肢腿单元轻量化设计[J]. 机械工程学报, 2024, 60(4): 420-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||