机械工程学报 ›› 2024, Vol. 60 ›› Issue (12): 1-20.doi: 10.3901/JME.2024.12.001
• 特邀专栏:可解释可信AI驱动的智能监测与诊断 • 上一篇 下一篇
严如强, 商佐港, 王志颖, 许文纲, 赵志斌, 王诗彬, 陈雪峰
收稿日期:
2023-07-10
修回日期:
2024-01-25
出版日期:
2024-06-20
发布日期:
2024-08-23
作者简介:
严如强(通信作者),男,1975年出生,博士,教授,博士研究生导师。主要研究方向为智能诊断与预测、智能制造与制造服务融合。E-mail:yanruqiang@xjtu.edu.cn
基金资助:
YAN Ruqiang, SHANG Zuogang, WANG Zhiying, XU Wengang, ZHAO Zhibin, WANG Shibin, CHEN Xuefeng
Received:
2023-07-10
Revised:
2024-01-25
Online:
2024-06-20
Published:
2024-08-23
摘要: 进入“大数据”时代,人工智能技术因其强大的数据挖掘与学习能力,成为工业智能诊断领域的重要方法,在机械装备的异常检测、故障诊断和寿命预测等方面发挥重要作用。随着机械装备日益向大型化、高速化、集成化和自动化发展,诊断方法的可信度变得至关重要。因此弱可解释性正成为人工智能技术在诊断领域实际应用的巨大障碍。为了推动人工智能技术在工业智能诊断领域的发展,对可解释人工智能方法进行综述。首先介绍可解释性技术的概念与作用原理,并对目前可解释性技术的主要观点与分类进行总结。接着,从工业诊断中常用的信号处理先验和物理知识先验角度,概述内在可解释的先验赋能可解释技术的研究现状。最后指出先验赋能可解释技术存在的挑战与机遇。
中图分类号:
严如强, 商佐港, 王志颖, 许文纲, 赵志斌, 王诗彬, 陈雪峰. 可解释人工智能在工业智能诊断中的挑战和机遇:先验赋能[J]. 机械工程学报, 2024, 60(12): 1-20.
YAN Ruqiang, SHANG Zuogang, WANG Zhiying, XU Wengang, ZHAO Zhibin, WANG Shibin, CHEN Xuefeng. Challenges and Opportunities of XAI in Industrial Intelligent Diagnosis: Priori-empowered[J]. Journal of Mechanical Engineering, 2024, 60(12): 1-20.
[1] VOULODIMOS A,DOULAMIS N,DOULAMIS A,et al. Deep learning for computer vision:A brief review[J]. Computational Intelligence and Neuroscience,2018,2018:7068349. [2] YOUNG T,HAZARIKA D,PORIA S,et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine,2018,13(3):55-75. [3] PURWINS H,LI B,VIRTANEN T,et al. Deep learning for audio signal processing[J]. IEEE Journal of Selected Topics in Signal Processing,2019,13(2):206-219. [4] WAINBERG M,MERICO D,DELONG A,et al. Deep learning in biomedicine[J]. Nature Biotechnology,2018,36(9):829-838. [5] OZBAYOGLU A M,GUDELEK M U,SEZER O B. Deep learning for financial applications:A survey[J]. Applied Soft Computing,2020,93:106384. [6] ZHANG Y,TIŇO P,LEONARDIS A,et al. A survey on neural network interpretability[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2021,5(5):726-742. [7] 吴飞,廖彬兵,韩亚洪. 深度学习的可解释性[J]. 航空兵器,2019,26(1):39-46. WU Fei,LIAO Binbing,HAN Yahong. Interpretability for deep learning[J]. Aero Weaponry,2019,26(1):39-46. [8] MILLER T. Explanation in artificial intelligence:Insights from the social sciences[J]. Artificial Intelligence,2019,267:1-38. [9] 成科扬,王宁,师文喜,等. 深度学习可解释性研究进展[J]. 计算机研究与发展,2020,57(6):1208-1217. CHENG Keyang,WANG Ning,SHI Wenxi,et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development,2020,57(6):1208-1217. [10] TJOA E,GUAN C. A survey on explainable artificial intelligence (xai):Toward medical xai[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,32(11):4793-4813. [11] 曾春艳,严康,王志锋,等.深度学习模型可解释性研究综述[J]. 计算机工程与应用,2021,57(8):1-9. ZENG Chunyan,YAN Kang,WANG Zhifeng,et al. Survey of interpretability research on deep learning models[J]. Computer Engineering and Applications,2021,57(8):1-9. [12] 苏炯铭,刘鸿福,项凤涛,等. 深度神经网络解释方法综述[J]. 计算机工程,2020,46(9):1-15. SU Jiongming,LIU Hongfu,XIANG Fengtao,et al. Survey of interpretation methods for deep neural networks[J]. Computer Engineering,2020,46(9):1-15. [13] GUNNING D,VORM E,WANG J Y,et al. DARPA’s explainable AI (XAI) program:A retrospective[J]. Applied AI Letters,2021,2(4):61. [14] DW G D A. DARPA’s explainable artificial intelligence program[J]. AI Mag,2019,40(2):44. [15] ADADI A,BERRADA M. Peeking inside the black-box:A survey on explainable artificial intelligence (XAI)[J]. IEEE Access,2018,6:52138-52160. [16] FAN F L,XIONG J,LI M,et al. On interpretability of artificial neural networks:A survey[J]. IEEE Transactions on Radiation and Plasma Medical Sciences,2021,5(6):741-760. [17] LI X,XIONG H,LI X,et al. Interpretable deep learning:Interpretation,interpretability,trustworthiness,and beyond[J]. Knowledge and Information Systems,2022,64(12):3197-3234. [18] GILPIN L H,BAU D,YUAN B Z,et al. Explaining explanations:An overview of interpretability of machine learning[C]//2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE,2018:80-89. [19] DOŠILOVIĆ F K,BRČIĆ M,HLUPIĆ N. Explainable artificial intelligence:A survey[C]//201841st International Convention on Information and Communication Technology,Electronics and Microelectronics (MIPRO). IEEE,2018:210-215. [20] ISLAM S R,EBERLE W,GHAFOOR S K,et al. Explainable artificial intelligence approaches:A survey[J]. arXiv,2021,Preprint arXiv:2101.09429. [21] XU C,LIAO Z,LI C,et al. Review on interpretable machine learning in smart grid[J]. Energies,2022,15(12):4427. [22] SENEVIRATHNA T,SALAZAR Z,LA V H,et al. A survey on XAI for beyond 5G security:Technical aspects,use cases,challenges and research directions[J]. arXiv,2022,Preprint arXiv:2204.12822. [23] ZABLOCKI É,BEN-YOUNES H,PÉREZ P,et al. Explainability of deep vision-based autonomous driving systems:Review and challenges[J]. International Journal of Computer Vision,2022,130(10):2425-2452. [24] AHMED I,JEON G,PICCIALLI F. From artificial intelligence to explainable artificial intelligence in industry 4.0:A survey on what,how,and where[J]. IEEE Transactions on Industrial Informatics,2022,18(8):5031-5042. [25] ZHAO Z,WU J,LI T,et al. Challenges and opportunities of AI-enabled monitoring,diagnosis & prognosis:A review[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-29. [26] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5): 94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [27] LIU R,YANG B,ZIO E,et al. Artificial intelligence for fault diagnosis of rotating machinery:A review[J]. Mechanical Systems and Signal Processing,2018,108:33-47. [28] ZHAO Z,LI T,WU J,et al. Deep learning algorithms for rotating machinery intelligent diagnosis:An open source benchmark study[J]. ISA Transactions,2020,107:224-255. [29] JIA F,LEI Y,LIN J,et al. Deep neural networks:A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing,2016,72:303-315. [30] ZHAO R,YAN R,CHEN Z,et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing,2019,115:213-237. [31] VOLLERT S,ATZMUELLER M,THEISSLER A. Interpretable machine learning:A brief survey from the predictive maintenance perspective[C]//202126th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,2021:1-8. [32] NOR A K B M,PEDAPAIT S R,MUHAMMAD M. Explainable ai (xai) for phm of industrial asset:A state-of-the-art,prisma-compliant systematic review[J]. arXiv,2021,Preprint arXiv:2107.03869. [33] 王国彪,何正嘉,陈雪峰,等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报,2013,49(1): 63-72. WANG Guobiao,HE Zhengjia,CHEN Xuefeng,et al. Basic research on machinery fault diagnosis——what is the prescription[J]. Journal of Mechanical Engineering,2013,49(1):63-72. [34] SHEN S,LU H,SADOUGHI M,et al. A physics-informed deep learning approach for bearing fault detection[J]. Engineering Applications of Artificial Intelligence,2021,103:104295. [35] MARX D,GRYLLIAS K. Domain knowledge informed unsupervised fault detection for rolling element bearings[C]//PHM Society European Conference,2022,7(1):338-350. [36] XIE T,XU Q,JIANG C,et al. The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines[J]. Renewable Energy,2023,202:143-153. [37] YIN T,LU N,GUO G,et al. Knowledge and data dual-driven transfer network for industrial robot fault diagnosis[J]. Mechanical Systems and Signal Processing,2023,182:109597. [38] SADOUGHI M,HU C. Physics-based convolutional neural network for fault diagnosis of rolling element bearings[J]. IEEE Sensors Journal,2019,19(11):4181-4192. [39] LI Y,ZHOU Z,SUN C,et al. Variational attention-based interpretable transformer network for rotary machine fault diagnosis[J]. IEEE Transactions on Neural Networks and Learning Systems,2022:1-14. [40] ZEGHIDOUR N,TEBOUL O,QUITRY F C,et al. LEAF:A learnable frontend for audio classification[J]. arXiv,2021,preprint arXiv:2101.08596. [41] GANGULY B,CHAUDHURI S,BISWAS S,et al. Wavelet kernel-based convolutional neural network for localization of partial discharge sources within a power apparatus[J]. IEEE Transactions on Industrial Informatics,2020,17(3):1831-1841. [42] LI T,ZHAO Z,SUN C,et al. WaveletKernelNet:An interpretable deep neural network for industrial intelligent diagnosis[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,52(4):2302-2312. [43] CHEN Q,DONG X,TU G,et al. TFN:An interpretable neural network with time-frequency transform embedded for intelligent fault diagnosis[J]. arXiv,2022,Preprint arXiv:2209.01992. [44] LI W,SHANG Z,QIAN S,et al. A novel intelligent fault diagnosis method of rotating machinery based on signal-to-image mapping and deep Gabor convolutional adaptive pooling network[J]. Expert Systems with Applications,2022,205:117716. [45] ABID F B,SALLEM M,BRAHAM A. Robust interpretable deep learning for intelligent fault diagnosis of induction motors[J]. IEEE Transactions on Instrumentation and Measurement,2019,69(6):3506-3515. [46] RAVANELLI M,BENGIO Y. Speaker recognition from raw waveform with sincnet[C]//2018 IEEE Spoken Language Technology Workshop (SLT). IEEE,2018:1021-1028. [47] KIM Y,NA K,YOUN B D. A health-adaptive time-scale representation (HTSR) embedded convolutional neural network for gearbox fault diagnostics[J]. Mechanical Systems and Signal Processing,2022,167:108575. [48] PU H,ZHANG K,AN Y. Restricted sparse networks for rolling bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics,2023,19(11):11139-11149. [49] LI T,YANG Y,CHEN X. Filter-informed spectral graph wavelet networks for multiscale feature extraction and intelligent fault diagnosis[J]. IEEE Transactions on Cybernetics,2024,54(1):506-518. [50] ZHU F,LIU C,YANG J,et al. An improved MobileNet network with wavelet energy and global average pooling for rotating machinery fault diagnosis[J]. Sensors,2022,22(12):4427. [51] LIAO M,LIU C,WANG C,et al. Research on a rolling bearing fault detection method with wavelet convolution deep transfer learning[J]. IEEE Access,2021,9:45175-45188. [52] TAI J,LIU C,WU X,et al. Bearing fault diagnosis based on wavelet sparse convolutional network and acoustic emission compression signals[J]. Mathematical Biosciences and Engineering,2022,19(8):8057-8080. [53] SHANG Z,ZHAO Z,ZHOU Z,et al. Denoising fused wavelets net for aeroengine bevel gear fault diagnosis[C]//2021 International Conference on Sensing,Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). IEEE,2021:1-6. [54] PAN J,ZI Y,CHEN J,et al. LiftingNet:A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification[J]. IEEE Transactions on Industrial Electronics,2017,65(6):4973-4982. [55] YUAN J,CAO S,REN G,et al. SGWnet:An interpretable convolutional neural network for mechanical fault intelligent diagnosis[C]//Neural Computing for Advanced Applications:Second International Conference,NCAA 2021,Guangzhou,China,August 27-30,2021,Proceedings 2. Springer Singapore,2021:360-374. [56] YUAN J,CAO S,REN G,et al. LW-Net:An interpretable network with smart lifting wavelet kernel for mechanical feature extraction and fault diagnosis[J]. Neural Computing and Applications,2022,34(18):15661-15672. [57] XIONG S,ZHOU H,HE S,et al. A novel end-to-end fault diagnosis approach for rolling bearings by integrating wavelet packet transform into convolutional neural network structures[J]. Sensors,2020,20(17):4965. [58] LIU C,QIN C,SHI X,et al. TScatNet:An interpretable cross-domain intelligent diagnosis model with antinoise and few-shot learning capability[J]. IEEE Transactions on Instrumentation and Measurement,2020,70:1-10. [59] LIU C,MA X,HAN T,et al. NTScatNet:An interpretable convolutional neural network for domain generalization diagnosis across different transmission paths[J]. Measurement,2022,204:112041. [60] MICHAU G,FRUSQUE G,FINK O. Fully learnable deep wavelet transform for unsupervised monitoring of high-frequency time series[J]. Proceedings of the National Academy of Sciences,2022,119(8):e2106598119. [61] FRUSQUE G,FINK O. Learnable wavelet packet transform for data-adapted spectrograms[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). IEEE,2022:3119-3123. [62] DAI B,FRUSQUE G,LI Q,et al. Acceleration-guided acoustic signal denoising framework based on learnable wavelet transform applied to slab track condition monitoring[J]. IEEE Sensors Journal,2022,22(24):24140-24149. [63] FRUSQUE G,FINK O. Robust time series denoising with learnable wavelet packet transform[J]. arXiv Preprint arXiv:2206.06126,2022. [64] LIU Y,JIANG H,LIU C,et al. Data-augmented wavelet capsule generative adversarial network for rolling bearing fault diagnosis[J]. Knowledge-Based Systems,2022,252:109439. [65] JIANG Y,XIA T,WANG D,et al. Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty[J]. Mechanical Systems and Signal Processing,2022,173:109014. [66] YE Z,YU J. Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis[J]. Mechanical Systems and Signal Processing,2021,161:107984. [67] YU J,HUANG J,LIU C,et al. Fault feature of gearbox vibration signals based on morphological filter dynamic convolution autoencoder[J]. IEEE Sensors Journal,2022,22(23):22931-22942. [68] LEI Y,JIA F,LIN J,et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics,2016,63(5):3137-3147. [69] MIAO M,YU J. Sparse representation network-based feature learning of vibration signal for machinery fault diagnosis[J]. IEEE Transactions on Industrial Informatics,2023,19(5):6706-6716. [70] GREGOR K,LECUN Y. Learning fast approximations of sparse coding[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. 2010:399-406. [71] YANG Y,SUN J,LI H,et al. Deep ADMM-Net for compressive sensing MRI[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:10-18. [72] MONGA V,LI Y,ELDAR Y C. Algorithm unrolling:Interpretable,efficient deep learning for signal and image processing[J]. IEEE Signal Processing Magazine,2021,38(2):18-44. [73] AN B,WANG S,ZHAO Z,et al. Interpretable neural network via algorithm unrolling for mechanical fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-11. [74] ZHAO Z,LI T,AN B,et al. Model-driven deep unrolling:Towards interpretable deep learning against noise attacks for intelligent fault diagnosis[J]. ISA Transactions,2022,129:644-662. [75] ZHAO M,ZHONG S,FU X,et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics,2019,16(7):4681-4690. [76] ZHAO B,CHENG C,TU G,et al. An interpretable denoising layer for neural networks based on reproducing kernel Hilbert space and its application in machine fault diagnosis[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-11. [77] LI T,SUN C,LI S,et al. Explainable graph wavelet denoising network for intelligent fault diagnosis[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,35(6):8535-8548. [78] WANG D,PENG Z,XI L. The sum of weighted normalized square envelope:A unified framework for kurtosis,negative entropy,Gini index and smoothness index for machine health monitoring[J]. Mechanical systems and signal processing,2020,140:106725. [79] HOU B,WANG D,KONG J Z,et al. Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring[J]. Mechanical Systems and Signal Processing,2022,174:109094. [80] WANG D,CHEN Y,SHEN C,et al. Fully interpretable neural network for locating resonance frequency bands for machine condition monitoring[J]. Mechanical Systems and Signal Processing,2022,168:108673. [81] WANG D,HOU B,YAN T,et al. New statistical learning perspective for design of a physically interpretable prototypical neural network for machine condition monitoring[J]. Mechanical Systems and Signal Processing,2023,188:110041. [82] WILLARD J,JIA X,XU S,et al. Integrating scientific knowledge with machine learning for engineering and environmental systems[J]. ACM Computing Surveys,2022,55(4):1-37. [83] KARNIADAKIS G E,KEVREKIDIS I G,LU L,et al. Physics-informed machine learning[J]. Nature Reviews Physics,2021,3(6):422-440. [84] CUOMO S,DI COLA V S,GIAMPAOLO F,et al. Scientific machine learning through physics-informed neural networks:Where we are and what’s next[J]. Journal of Scientific Computing,2022,92(3):88. [85] XU Y,KOHTZ S,BOAKYE J,et al. Physics-informed machine learning for reliability and systems safety applications:State of the art and challenges[J]. Reliability Engineering & System Safety,2022:108900. [86] DENG W,NGUYEN K T P,GOGU C,et al. Physics-informed lightweight temporal convolution networks for fault prognostics associated to bearing stiffness degradation[C]//PHM Society European Conference. 2022,7(1):118-125. [87] KIM S,CHOI J H,KIM N H. Data-driven prognostics with low-fidelity physical information for digital twin:Physics-informed neural network[J]. Structural and Multidisciplinary Optimization,2022,65(9):255. [88] GUC F,CHEN Y. Sensor fault diagnostics using physics-informed transfer learning framework[J]. Sensors,2022,22(8):2913. [89] GUC F,CHEN Y Q. Fault cause assignment with physics informed transfer learning[J]. IFAC-PapersOnLine,2021,54(20):53-58. [90] LI W,DEKA D. Physics-informed learning for high impedance faults detection[C]//2021 IEEE Madrid PowerTech. IEEE,2021:1-6. [91] LI W,DEKA D. PPGN:physics-preserved graph networks for real-time fault location in distribution systems with limited observation and labels[J]. arXiv Preprint arXiv:2107.02275,2021. [92] WANG J,LI Y,GAO R X,et al. Hybrid physics-based and data-driven models for smart manufacturing:Modelling,simulation,and explainability[J]. Journal of Manufacturing Systems,2022,63:381-391. [93] SILVA B M D,CALLAHAM J,JONKER J,et al. Physics-informed machine learning for sensor fault detection with flight test data[J]. arXiv Preprint arXiv:2006.13380,2020. [94] KOHTZ S,XU Y,ZHENG Z,et al. Physics-informed machine learning model for battery state of health prognostics using partial charging segments[J]. Mechanical Systems and Signal Processing,2022,172:109002. [95] SUN B,PAN J,WU Z,et al. Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries[J]. Journal of Power Sources,2023,556:232432. [96] CHAO M A,KULKARNI C,GOEBEL K,et al. Hybrid deep fault detection and isolation:Combining deep neural networks and system performance models[J]. arXiv Preprint arXiv:1908.01529,2019. [97] CHAO M A,KULKARNI C,GOEBEL K,et al. Fusing physics-based and deep learning models for prognostics[J]. Reliability Engineering & System Safety,2022,217:107961. [98] YAN K,CHEN X,ZHOU X,et al. Physical model informed fault detection and diagnosis of air handling units based on transformer generative adversarial network[J]. IEEE Transactions on Industrial Informatics,2022,19(2):2192-2199. [99] BOUSHABA A,CAUET S,CHAMROO A,et al. Comparative study between physics-informed CNN and PCA in induction motor broken bars MCSA detection[J]. Sensors,2022,22(23):9494. [100] ZGRAGGEN J,GUO Y,NOTARISTEFANO A,et al. Physics informed deep learning for tracker fault detection in photovoltaic power plants[C]//14th Annual Conference of the Prognostics and Health Management Society,Nashville,USA,1-4 November 2022. PHM Society,2022,14(1):1-10. [101] LUI Y H,LI M,DOWNEY A,et al. Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction[J]. Journal of Power Sources,2021,485:229327. [102] XING Y,LIU Y,WANG B,et al. Physics-informed data-driven transmission line fault location based on dynamic state estimation[C]//2022 IEEE Power & Energy Society General Meeting (PESGM). IEEE,2022:1-5. [103] QIN T,WU K,XIU D. Data driven governing equations approximation using deep neural networks[J]. Journal of Computational Physics,2019,395:620-635. [104] DOURADO A,VIANA F A C. Physics-informed neural networks for missing physics estimation in cumulative damage models:A case study in corrosion fatigue[J]. Journal of Computing and Information Science in Engineering,2020,20(6):061007. [105] MA Z,LIAO H,GAO J,et al. Physics-informed machine learning for degradation modeling of an electro-hydrostatic actuator system[J]. Reliability Engineering & System Safety,2023,229:108898. [106] SHI J,RIVERA A,WU D. Battery health management using physics-informed machine learning:Online degradation modeling and remaining useful life prediction[J]. Mechanical Systems and Signal Processing,2022,179:109347. [107] NASCIMENTO R G,CORBETTA M,KULKARNI C S,et al. Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis[J]. Journal of Power Sources,2021,513:230526. [108] LI Y,WANG J,HUANG Z,et al. Physics-informed meta learning for machining tool wear prediction[J]. Journal of Manufacturing Systems,2022,62:17-27. [109] YUCESAN Y A,VIANA F A C. Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection[J]. Computers in Industry,2021,125:103386. [110] YUCESAN Y A,VIANA F A C. A hybrid physics-informed neural network for main bearing fatigue prognosis under grease quality variation[J]. Mechanical Systems and Signal Processing,2022,171:108875. [111] LU P Y,KIM S,SOLJAČIĆ M. Extracting interpretable physical parameters from spatiotemporal systems using unsupervised learning[J]. Physical Review X,2020,10(3):031056. [112] GONG M,TANG D,YU J,et al. A physics-informed transfer learning approach for anomaly detection of aerospace CMG with limited telemetry data[C]//2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing). IEEE,2021:1-5. [113] ZHOU Z,LI T,ZHAO Z,et al. Time-varying trajectory modeling via dynamic governing network for remaining useful life prediction[J]. Mechanical Systems and Signal Processing,2023,182:109610. [114] WESSELS H,WEIßENFELS C,WRIGGERS P,et al. The neural particle method — An updated lagrangian physics informed neural network for computational fluid dynamics[J]. Computer Methods in Applied Mechanics and Engineering,2020,368:113127. [115] LI X,ZHANG W. Physics-informed deep learning model in wind turbine response prediction[J]. Renewable Energy,2022,185:932-944. [116] ZHAO S,PENG Y,ZHANG Y,et al. Parameter estimation of power electronic converters with physics-informed machine learning[J]. IEEE Transactions on Power Electronics,2022,37(10):11567-11578. [117] NABIAN M A,MEIDANI H. Physics-driven regularization of deep neural networks for enhanced engineering design and analysis[J]. Journal of Computing and Information Science in Engineering,2020,20(1):011006. [118] RUSSELL M,WANG P. Physics-informed deep learning for signal compression and reconstruction of big data in industrial condition monitoring[J]. Mechanical Systems and Signal Processing,2022,168:108709. [119] XIE J,CHAI Z,XU L,et al. 3D temperature field prediction in direct energy deposition of metals using physics informed neural network[J]. The International Journal of Advanced Manufacturing Technology,2022,119(5-6):3449-3468. [120] CHEN X,MA M,ZHAO Z,et al. Physics-informed deep neural network for bearing prognosis with multisensory signals[J]. Journal of Dynamics,Monitoring and Diagnostics,2022,1(4):200-207. [121] ZHAO X,GONG Z,ZHANG Y,et al. Physics-informed convolutional neural networks for temperature field prediction of heat source layout without labeled data[J]. Engineering Applications of Artificial Intelligence,2023,117:105516. [122] CHEN Y,RAO M,FENG K,et al. Physics-informed LSTM hyperparameters selection for gearbox fault detection[J]. Mechanical Systems and Signal Processing,2022,171:108907. [123] FREEMAN B,TANG Y,HUANG Y,et al. Physics-informed turbulence intensity infusion:A new hybrid approach for marine current turbine rotor blade fault detection[J]. Ocean Engineering,2022,254:111299. [124] XU S,NOH H Y. PhyMDAN:Physics-informed knowledge transfer between buildings for seismic damage diagnosis through adversarial learning[J]. Mechanical Systems and Signal Processing,2021,151:107374. [125] COFRE-MARTEL S,LOPEZ DROGUETT E,MODARRES M,et al. Remaining useful life estimation through deep learning partial differential equation models:A framework for degradation dynamics interpretation using latent variables[J]. T. Xia. Shock and Vibration,2021,2021:1-15. [126] XU Z,GUO Y,SALEH J H,et al. A physics-informed dynamic deep autoencoder for accurate state-of-health prediction of lithium-ion battery[J]. Neural Computing and Applications,2022,34(18):15997-16017. [127] KOHTZ S,WANG P. Physics-based machine learning with filtering for failure prognostics partially observable dynamic systems[C]//2022 Annual Reliability and Maintainability Symposium (RAMS),Tucson,AZ,USA:IEEE,2022:1-6. [128] ZHOU T,DROGUETT E L,MOSLEH A,et al. Physics-informed deep learning:A promising technique for system reliability assessment[J]. Applied Soft Computing,2022,126:109217. [129] JADHAV V,DEODHAR A,GUPTA A,et al. Physics informed neural network for health monitoring of an air preheater[C]//PHM Society European Conference,2022,7(1):219-230. [130] ZHANG Z,SUN C. Structural damage identification via physics-guided machine learning:A methodology integrating pattern recognition with finite element model updating[J]. Structural Health Monitoring,2021,20(4):1675-1688. [131] XU W,ZHOU Z,LI T,et al. Physics-constraint variational neural network for wear state assessment of external gear pump[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,355(5):5996-6006. [132] SHANG Z,ZHAO Z,YAN R,et al. Denoising fault-aware wavelet network:A signal processing informed neural network for fault diagnosis[J]. Chinese Journal of Mechanical Engineering,2023,36(1):9. [133] LI C,WELLING M,ZHU J,et al. Graphical generative adversarial networks[C/CD]//BENGIO S,WALLACH H,LAROCHELLE H,et al. Advances in Neural Information Processing Systems. Curran Associates,Inc.,2018. [134] CHAN K H R,YU Y,YOU C,et al. ReduNet:A white-box deep network from the principle of maximizing rate reduction[J]. Journal of Machine Learning Research,2022,23:1-103. [135] SHEN Z,CUI P,ZHANG T,et al. Stable learning via sample reweighting[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(4):5692-5699. [136] PAN P,ZHANG Y,DENG Z,et al. TFA-Net:a deep learning-based time-frequency analysis tool[J]. IEEE Transactions on Neural Networks and Learning Systems,2023,34(11):1-13. [137] HUANG J J,DRAGOTTI P L. WINNet:wavelet-inspired invertible network for image denoising[J]. IEEE Transactions on Image Processing,2022,31:4377-4392. [138] LIU N,WANG J,YANG Y,et al. WVDNet:Time-frequency analysis via semi-supervised learning[J]. IEEE Signal Processing Letters,2023,30:55-59. |
[1] | 严如强, 许文纲, 王志颖, 朱启翔, 周峥, 赵志斌, 孙闯, 王诗彬, 陈雪峰, 张军辉, 徐兵. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
[2] | 严如强, 周峥, 杨远贵, 李亚松, 胡晨烨, 陶治宇, 赵志斌, 王诗彬, 陈雪峰. 可解释人工智能在工业智能诊断中的挑战和机遇:归因解释[J]. 机械工程学报, 2024, 60(12): 21-40. |
[3] | 王俊, 杨轶青, 刘金朝, 沈长青, 黄伟国, 朱忠奎. 小波核编码的脉冲卷积神经网络在可解释性智能诊断中的应用研究[J]. 机械工程学报, 2024, 60(12): 41-50. |
[4] | 袁静, 任港星, 蒋会明, 赵倩, 魏臣隽, 朱骏. 基于多元提升核神经网络的机械故障诊断方法及其特征提取可解释性研究[J]. 机械工程学报, 2024, 60(12): 51-64. |
[5] | 陈钱, 陈康康, 董兴建, 皇甫一樊, 彭志科, 孟光. 一种面向机械设备故障诊断的可解释卷积神经网络[J]. 机械工程学报, 2024, 60(12): 65-76. |
[6] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[7] | 温楷儒, 陈祝云, 黄如意, 李东鹏, 李巍华. 基于可解释时空图卷积网络的多传感数据融合诊断方法[J]. 机械工程学报, 2024, 60(12): 158-167. |
[8] | 曹杰, 王政, 花镜, 张忠强, 程广贵, 丁建宁. 基于静电感应的非接触式手势解锁技术研究[J]. 机械工程学报, 2024, 60(11): 309-317. |
[9] | 林京, 焦金阳. 可解释机械智能诊断技术的研究进展与挑战[J]. 机械工程学报, 2023, 59(20): 215-224. |
[10] | 雷亚国, 杨彬, 李乃鹏, 李响, 武通海. 跨设备的机械故障靶向迁移诊断方法[J]. 机械工程学报, 2022, 58(12): 1-9. |
[11] | 向家伟. 数值模型驱动的传动系统故障个性化诊断原理[J]. 机械工程学报, 2021, 57(15): 116-128. |
[12] | 雷亚国, 杨彬, 杜兆钧, 吕娜. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8. |
[13] | 许小伟, 张楠, 严运兵, 秦丽. 基于快速在线支持张量机的柴油机智能诊断方法[J]. 机械工程学报, 2018, 54(22): 30-37. |
[14] | 谢门喜,朱灿焰,杨勇. SRF-PLL环内应用二阶广义积分器的不平衡电压锁相方法[J]. 电气工程学报, 2017, 12(9): 16-21. |
[15] | 谢门喜,朱灿焰,杨勇. 应用复系数滤波器的不平衡电网电压锁相方法[J]. 电气工程学报, 2016, 11(8): 37-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||