• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (11): 318-331.doi: 10.3901/JME.2024.11.318

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于伯努利分布与混合驱动模型的铣削稳定性高精判断方法

谭志朴1, 秦国华1, 娄维达2, 吴竹溪1   

  1. 1. 南昌航空大学航空制造工程学院 南昌 330063;
    2. 西北工业大学机电学院 西安 710072
  • 收稿日期:2023-03-11 修回日期:2023-09-05 出版日期:2024-06-05 发布日期:2024-08-02
  • 作者简介:谭志朴,男,1998年出生。主要研究方向为机械加工质量分析与智能诊断等。E-mail:526510948@qq.com
    秦国华(通信作者),男,1970年出生,教授,博士研究生导师。主要研究方向为工件装夹分析与优化、加工过程力学分析与仿真、残余应力分析与预测、健康管理与故障诊断等。E-mail:qghwzx@126.com
    娄维达,男,1994年出生,博士研究生。主要研究方向为铣削稳定性分析与抑制、高效高精加工技术。
    吴竹溪,女,1969年出生,副教授。主要研究方向为数控加工技术、高效高精加工技术。
  • 基金资助:
    国家自然科学基金(51765047)、江西省主要学科学术和技术带头人培养计划(20172BCB22013)和江西省重点研发计划(20203BBE53049)资助项目。

High Precision Judgement Method for Milling Stability Based on Bernoulli Distribution and Hybrid Drive Model

TAN Zhipu1, QIN Guohua1, LOU Weida2, WU Zhuxi1   

  1. 1. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063;
    2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072
  • Received:2023-03-11 Revised:2023-09-05 Online:2024-06-05 Published:2024-08-02

摘要: 铣削颤振严重影响工件表面质量和生产效率,准确识别铣削稳定域对于抑制颤振、提高生产效率具有非常重要的意义。目前一般依据状态转移矩阵特征值的谱半径小于1,来判断铣削系统的稳定性。由于在铣削和锤击实验的不确定性,铣削系统的属性参数势必存在误差,极大地影响稳定性的判断结果。为此通过研究铣削过程颤振稳定性的概率特性,建立属性参数优化的SLD(稳定性叶瓣图)修正方法。首先利用Cotes积分法和Floquet理论,建立铣削稳定性的判断模型。其次利用伯努利分布概率函数等效描述稳定性判断模型,根据稳定性判断结果的伯努利分布规律提出属性参数的修正函数。最后提出基于神经网络的黄金分割法和遗传算法的属性参数优化方法,实验结果表明,提出的方法对单个叶瓣的稳定性判断准确率由69.77%提高到93.02%,整个SLD的准确率可由73.73%提升至87.29%。

关键词: 颤振, Cotes积分, 稳定性叶瓣图, 伯努利分布, 数据驱动法, 优化

Abstract: Milling chatter seriously affects workpiece surface quality and production efficiency. It is very important to identify milling stability domain accurately for suppressing chatter and improving production efficiency. At present, the stability of milling system is generally judged according to the spectral radius of eigenvalue of state transition matrix is less than 1. Due to the uncertainty in milling and hammering experiments, there exist errors to affect milling system attribute parameters and in turn, greatly affect the judgment results of stability. Therefore, by studying the probabilistic characteristics of chatter stability in milling process, a correction method of SLD (stability lobe diagram) based on attribute parameter optimization is established. Firstly, a milling stability judgment model is established by using Cotes integral method and Floquet theory. Secondly, the stability judgment model is equivalent described by Bernoulli distribution probability function. The correction functions of attribute parameters are proposed according to Bernoulli distribution law of stability judgment results. Finally, the golden section method and genetic algorithm based on the neural network are proposed to optimize the attribute parameters. The experimental results show that the stability accuracy of the proposed method for a single lobe is improved from 69.77% to 93.02% whereas the accuracy of the whole SLD is improved from 73.73% to 87.29%.

Key words: chatter, Cotes integration, stability lobe diagram, Bernoulli distribution, data driven method, optimization

中图分类号: