机械工程学报 ›› 2024, Vol. 60 ›› Issue (10): 339-365.doi: 10.3901/JME.2024.10.339
张奇祥1, 王金湘1, 张伊晗2, 张荣林3, 靳立强4, 殷国栋1
收稿日期:
2023-08-01
修回日期:
2023-12-05
出版日期:
2024-05-20
发布日期:
2024-07-24
作者简介:
张奇祥,男,1996年出生,博士研究生。主要研究方向为智能底盘线控技术、自动驾驶决策规划。基金资助:
ZHANG Qixiang1, WANG Jinxiang1, ZHANG Yihan2, ZHANG Ronglin3, JIN Liqiang4, YIN Guodong1
Received:
2023-08-01
Revised:
2023-12-05
Online:
2024-05-20
Published:
2024-07-24
摘要: 智能电动汽车要求制动系统能够实现主动制动和制动能量回收等功能,传统制动系统不能满足上述需求。线控制动系统具有结构紧凑、响应迅速、控制精确、兼容性强等优势,是实现自动驾驶的理想执行机构,已成为当前的研究热点。为系统、及时地掌握该领域的发展态势,综述智能电动汽车线控制动系统的关键技术与研究进展。介绍线控制动系统的类型及其特点,明确线控制动系统结构方案的发展趋势和研究重点,归纳线控制动系统的典型产品及其特性,提出智能电动汽车线控制动系统的总体控制架构。在此基础上,对线控制动系统的测试与建模、动力缸压力控制、轮缸压力控制、轮缸压力估算、电磁阀控制、夹紧力控制、踏板感模拟控制、传感器故障诊断和个性化控制等关键技术进行梳理。概述基于线控制动系统的制动防抱死、自适应巡航及自动紧急制动等车辆纵向运动控制方法。最后,对智能电动汽车线控制动系统研究所面临的问题及未来的发展趋势进行分析和展望。
中图分类号:
张奇祥, 王金湘, 张伊晗, 张荣林, 靳立强, 殷国栋. 智能电动汽车线控制动关键技术与研究进展[J]. 机械工程学报, 2024, 60(10): 339-365.
ZHANG Qixiang, WANG Jinxiang, ZHANG Yihan, ZHANG Ronglin, JIN Liqiang, YIN Guodong. Key Technologies and Research Progress of Brake-by-wire System for Intelligent Electric Vehicles[J]. Journal of Mechanical Engineering, 2024, 60(10): 339-365.
[1] 中华人民共和国国家发展和改革委员会. 智能汽车创新发展战略(发改产业[2020〕202号) [EB/OL]. (2020-2-10) [2021-10-29]. http://www.gov.cn/zhengce/zhengceku/2020-02/24/content_5482655.htm. National Development and Reform Commission (NDRC),People's Republic of China. Strategy for intelligent vehicle innovation and development(〔2020]No.202) [EB/OL] (2020-2-10) [2021-10-29]. http://www.gov.cn/zhengce/zhengceku/2020-02/24/content_5482655.htm. [2] 张渊博,王伟达,张华,等. 基于新型改进遗传算法的混合动力客车高效制动能量回收预测控制策略研究[J] 机械工程学报,2020,56(18):105-115. ZHANG Yuanbo,WANG Weida,ZHANG Hua,et al. Research on modified genetic algorithm-based high efficiency predictive regenerative braking control strategy for hybrid electric bus[J]. Journal of Mechanical Engineering,2020,56(18):105-115. [3] JI Y,ZHANG J,HE C,et al. Constraint performance pressure tracking control with asymmetric continuous friction compensation for booster based brake-by-wire system[J]. Mechanical Systems and Signal Processing,2022,174:109083. [4] 余卓平,韩伟,徐松云,等. 电子液压制动系统液压力控制发展现状综述[J]. 机械工程学报,2017,53(14):1-15. YU Zhuoping,HAN Wei,XU Songyun,et al. Review on hydraulic pressure control of electro-hydraulic brake system[J]. Journal of Mechanical Engineering,2017,53(14):1-15. [5] 张奇祥,靳立强,靳博豪,等. EMB夹紧力控制与传感器故障诊断研究进展[J]. 汽车工程,2022,44(5):736-746,755. ZHANG Qixiang,JIN Liqiang,JIN Bohao,et al. Research progress of EMB clamping force control and sensor fault diagnosis[J]. Automotive Engineering,2022,44(5):736-746,755. [6] GONG X,GE W,YAN J,et al. Review on the development,control method and application prospect of brake-by-wire actuator[J]. Actuators,2020,9(1):15. [7] MENG B,YANG F,LIU J,et al. A survey of brake-by-wire system for intelligent connected electric vehicles [J]. IEEE Access,2020,8:225424-225436. [8] LI D,TAN C,GE W,et al. Review of brake-by-wire system and control technology[J]. Actuators,2022,11(3):80. [9] ZHAO J,CHEN Z,ZHU B,et al. Precise active brake-pressure control for a novel electro-booster brake system[J]. IEEE Transactions on Industrial Electronics,2019,67(6):4774-4784. [10] 刘海贞. 新型电子液压制动系统及其控制方法研究[D]. 长春:吉林大学,2018. LIU Haizhen. Studies on a novel electro-hydraulic brake system and its control methods[D]. Changchun:Jilin University,2018. [11] SAVITSKI D,SCHLEININ D,IVANOV V,et al. Robust continuous wheel slip control with reference adaptation:Application to the brake system with decoupled architecture[J]. IEEE Transactions on Industrial Informatics,2018,14(9):4212-4223. [12] XU Z,GERADA C. Enhanced force estimation for electromechanical brake actuators in transportation vehicles[J]. IEEE Transactions on Power Electronics,2021,36(12):14329-14339. [13] WU J,ZHANG H,HE R,et al. A mechatronic brake booster for electric vehicles:Design,control,and experiment[J]. IEEE Transactions on Vehicular Technology,2020,69(7):7040-7053. [14] KELLER F. Electromagnetic wheel brake device:U.S. Patent 6,536,561[P]. 2003-03-25. [15] LINE C,MANZIE C,GOOD M. Control of an electromechanical brake for automotive brake-by-wire systems with an adapted motion control architecture[J]. SAE Transactions,2004:1047-1056. [16] LEE Y O,JANG M,LEE W,et al. Novel clamping force control for electric parking brake systems[J]. Mechatronics,2011,21(7):1156-1162. [17] LEE C F,MANZIE C. Near-time-optimal tracking controller design for an automotive electromechanical brake[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems Control Engineering,2012,226(4):537-549. [18] BAE J E S,LEE S. Hybrid genetic algorithm and kalman filter approach to estimate the clamping force of electro-mechanical brake[J]. International Research Journal of Electronics and Computer Engineering,2017,3(4):1-10. [19] WINKLER T,KLIMT A,HESS T,et al. Combined vehicle brake with electromechanically actuable parking brake:U.S. Patent 8,684,147[P]. 2014-04-01. [20] JO C,HWANG S,KIM H. Clamping-force control for electromechanical brake[J]. IEEE Transactions on Vehicular Technology,2010,59(7):3205-3212. [21] LINE C,MANZIE C,GOOD M C. Electromechanical brake modeling and control:from PI to MPC[J]. IEEE Transactions on Control Systems Technology,2008,16(3):446-457. [22] KRISHNAMURTHY P,LU W,KHORRAMI F,et al. Robust force control of an SRM-based electromechanical brake and experimental results[J]. IEEE Transactions on Control Systems Technology,2009,17(6):1306-1317. [23] LI Y,SHIM T,SHIN D H,et al. Control system design for electromechanical brake system using novel clamping force model and estimator[J]. IEEE Transactions on Vehicular Technology,2021,70(9):8653-8668. [24] 赵逸云,林辉,李兵强. 电子机械制动系统无压力传感器控制策略研究[J]. 北京航空航天大学学报,2023,49(10):2711-2720. ZHAO Yiyun,LIN Hui,LI Bingqiang. Research on clamping force sensorless control for electromechanical brake systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2711-2720. [25] PARK G,CHOI S B. Clamping force control based on dynamic model estimation for electromechanical brakes[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2018,232(14):2000-2013. [26] EUM S,CHOI J,PARK S S,et al. Robust clamping force control of an electro-mechanical brake system for application to commercial city buses[J]. Energies,2017,10(2):220. [27] HAN K,KIM M,HUH K. Modeling and control of an electronic wedge brake[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2012,226(10):2440-2455. [28] AHMAD F,HUDHA K,MAZLAN S A,et al. Simulation and experimental investigation of vehicle braking system employing a fixed caliper based electronic wedge brake [J]. Simulation,2018,94(4):327-340. [29] HASAN M H C,HASSAN M K,AHMAD F,et al. A dynamic model of electronic wedge brake:experimental,control and optimization[J]. Indonesian Journal of Electrical Engineering Computer Science,2021,23(2):740-751. [30] STEFAN H,SCHWANDOR F. Brake system for a motor vehicle:U.S. Patent 6,189,981[P]. 2002-08-13. [31] XIAO F,GONG X,LU Z,et al. Design and control of new brake-by-wire actuator for vehicle based on linear motor and lever mechanism[J]. IEEE Access,2021,9:95832-95842. [32] BLAISE G A A. Slip control boost braking system:US 9221443 B2[P]. 2015-12-29. [33] 张俊智,吕辰,李禹橦,等. 电驱动乘用车制动能量回收技术发展现状与展望[J]. 汽车工程,2014,36(8):911-918. ZHANG Junzhi,LÜ Chen,LI Yulu,et al. Status quo and prospect of regenerative braking technology in electric cars[J]. Automotive Engineering,2014,36(8):911-918. [34] NAKAMURA E. Brake control system and control method for brake control system:U.S. Patent 8,708,427[P]. 2014-04-29. [35] 谷贺冲. 乘用车电机直驱线控制动系统设计与控制研究[D]. 长春:吉林大学,2019. GU Hechong. Research on design and control of direct motor-driving brake-by-wire system for passenger car[D]. Changchun:Jilin University,2019. [36] OSHIMA T,FUJIKI N,NAKAO S,et al. Development of an electrically driven intelligent brake system[J]. SAE International Journal of Passenger Cars-Mechanical Systems,2011,4:399-405. [37] FOITZIK B,MAHNKOPF D. Method for braking intention detection,device for braking intention detection for a braking system of a vehicle,and sensors for a braking system of a vehicle:U.S. Patent 9,037,374[P]. 2015-05-19. [38] 杜莎. 博世iBooster助推汽车电气化与自动驾驶发展[J]. 汽车与配件,2017(23):42-43. DU Sha. Bosch iBooster boosts the development of vehicle electrification and autonomous driving[J]. Automobile & Parts,2017(23):42-43. [39] 甄文媛. 智能汽车线控自主争夺战[J]. 汽车纵横,2021(3):50-56. ZHEN Wenyuan. The battle for autonomous control of smart cars by wire[J]. Auto Review,2021(3):50-56. [40] 技术:英创汇智公司电动助力制动系统T-Booster[EB/OL]. [2018-10-25]. http://www.chebrake. com/tech/2019/05/13/19867.html. Technology:The electric power brake system T-Booster of trinova company[EB/OL]. [2018-10-25]. http://www.chebrake.com/tech/2019/05/13/19867.html. [41] 同驭汽车科技. 线控电子液压制动系统[EB/OL]. [2022-01-19]. http://www.tongyuauto.com/info/69096.html. TONGYU Auto Technology. Electro-hydraulic braking system[EB/OL]. [2022-01-19]. http://www.tongyuauto.com/info/69096.html. [42] LEIBER H,UNTERFRAYNNER V. Brake system comprising at least one conveying unit for redelivering brake fluid to the working chambers of a brake booster:U.S. Patent Application 12/809,725[P]. 2011-01-13. [43] FEIGEL H J. Integrated brake system without compromises in functionality[J]. ATZ worldwide,2012,114(7):46-50. [44] BAUER U,BRAND M,MAUCHER T. Integrated power brake–modular set extension for highly automated driving[C]//8th International Munich Chassis Symposium 2017. Springer Vieweg,Wiesbaden,2017:693-710. [45] 弗迪动力. 驭时而进,行稳智远:弗迪动力制动安全控制系统[EB/OL]. [2021-06-04]. https://mp.weixin.qq.com/s/NsTnCQdKTXUMuCNWMWK1Zw. FUDI Dynamics. Go ahead with the times,travel steadily and far:Fudi dynamic brake safety control system [EB/OL]. [2021-06-04]. https://mp.weixin.qq.com/s/NsTnCQdKTXUMuCNWMWK1Zw. [46] 格陆博科技. GIBC[EB/OL]. [2021-03-09]. http://wwwglb-autocom/indexphp/info/7/56html. GLOBAL Technology. GIBC[EB/OL]. [2021-03-09]. htt p://wwwglb-autocom/indexphp/info/7/56html. [47] 朱冰,张伊晗,赵健. 基于集成式电液制动系统的主动制动压力精确控制方法[J]. 中国公路学报,2021,34(9):111-120. ZHU Bing,ZHANG Yihan,ZHAO Jian. Precise control method for active brake pressure based on an integrated braking control system[J]. China Journal of Highway and Transport,2021,34(9):111-120. [48] 上官文斌,梁土强,蒋开洪,等. 集成式电液制动系统建模与压力控制方法研究[J]. 北京理工大学学报,2019,39(4):413-418. SHANGGUAN Wenbin,LIANG Tuqiang,JIANG Kaihong,et al. Modeling and pressure control of integrated electro-hydraulic brake system[J]. Transactions of Beijing Institute of Technology,2019,39(4):413-418. [49] 赵健,邓志辉,朱冰,等. 基于RBF网络滑模的电动助力制动系统液压力控制[J]. 机械工程学报,2020,56(24):106-114. ZHAO Jian,DENG Zhihui,ZHU Bing,et al. Sliding mode control based on RBF network for hydraulic pressure in electric power-assisted brake system[J]. Journal of Mechanical Engineering,2020,56(24):106-114. [50] HAN W,XIONG L,YU Z. Braking pressure control in electro-hydraulic brake system based on pressure estimation with nonlinearities and uncertainties[J]. Mechanical Systems Signal Processing,2019,131:703-727. [51] YAO J,DENG W,JIAO Z. Adaptive control of hydraulic actuators with LuGre model-based friction compensation [J]. IEEE Transactions on Industrial Electronics,2015,62(10):6469-6477. [52] SHI Q,HE L. A model predictive control approach for electro-hydraulic braking by wire[J]. IEEE Transactions on Industrial Informatics,2022,19(2):1380-1388. [53] AOKI Y,SUZUKI K,NAKANO H,et al. Development of hydraulic servo brake system for cooperative control with regenerative brake:2007-01-0868[R]. SAE Technical Paper,2007. [54] LEIBER T,KÖGLSPERGER C,UNTERFRAUNER V. Modular brake system with integrated functionalities[J]. ATZ worldwide eMagazine,2011,113(6):20-25. [55] LINKENBACH S,DRUMM S. Brake system for motor vehicles:US 2013/0147259 A1[P]. 2013-06-13. [56] 余卓平,徐松云,熊璐,等. 集成式电子液压制动系统鲁棒性液压力控制[J]. 机械工程学报,2015,51(16):22-28. YU Zhuoping,XU Songyun,XIONG Lu,et al. Robustness hydraulic pressure control system of integrated-electro-hydraulic brake system[J]. Journal of Mechanical Engineering,2015,51(16):22-28. [57] DE CASTRO R,TODESCHINI F,ARAUJO R E,et al. Adaptive-robust friction compensation in a hybrid brake-by-wire actuator[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems Control Engineering,2014,228(10):769-786. [58] 曲再鹏. 依维柯汽车均一路面EHB控制系统的研究[D]. 长春:吉林大学,2005. QU Zaipeng. Research on electro-hydraulic braking control system of IVECO off-road vehicle on road[D]. Changchun:Jilin University,2005. [59] D'ALFIO N,MORGANDO A,SORNIOTTI A. Electro-hydraulic brake systems:Design and test through hardware-in-the-loop simulation[J]. Vehicle System Dynamics,2006,44(Suppl.1):378-392. [60] SORNIOTTI A,REPICI G M. Hardware in the loop with electro-hydraulic brake systems[C]//9th WSEAS International Conference on Systems. 2005:1-7. [61] PARK M,KIM S,YANG L,et al. Development of the control logic of electronically controlled hydraulic brake system for hybrid vehicle:2009-01-1215[R]. SAE Technical Paper,2009. [62] 黄丰云,刘伟光,魏翼鹰,等. 轮缸压力估算与控制仿真研究[J]. 机械科学与技术,2021,40(1):132-138. HUANG Fengyun,LIU Weiguang,WEI Yiying,et al. Simulating pressure estimation and control of wheel cylinder[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(1):132-138. [63] 丁明慧. 乘用车线控液压制动系统执行器动态特性研究[D]. 长春:吉林大学,2018. DING Minghui. Research on actuator dynamic characteristics of hydraulic brake-by-wire system for passenger car[D]. Changchun:Jilin University,2018. [64] 吴学杰,冯智勇,裴晓飞,等. 基于SOA算法的EHB制动系统压力控制研究[J]. 自动化与仪表,2017,32(11):49-55. WU Xuejie,FENG Zhiyong,PEI Xiaofei,et al. Research on pressure control of EHB braking system based on SOA algorithm[J]. Automation & Instrumentation,2017,32(11):49-55. [65] ZHANG H,HAN W,XIONG L,et al. Design and research on hydraulic control unit for a novel integrated-electro-hydraulic braking system[C]//2016 IEEE Transportation Electrification Conference and Expo,Asia-Pacific (ITEC Asia-Pacific). IEEE,2016:139-144. [66] 韩伟,熊璐,侯一萌,等. 基于线控制动系统的车辆横摆稳定性优化控制[J]. 同济大学学报(自然科学版),2017,45(5):732-740. HAN Wei,XIONG Lu,HOU Yimeng,et al. Vehicle yaw stability optimized control based on brake by wire system [J]. Journal of Tongji University (Natural Science),2017,45(5):732-740. [67] 熊璐,杨兴,冷搏,等. 无压力传感器下的电子液压制动系统轮缸液压力控制[J]. 同济大学学报(自然科学版),2020,48(8):1199-1207. XIONG Lu,YANG Xing,LENG Bo,et al. Wheel-cylinder hydraulic pressure control of integrated-electro-hydraulic brake system without pressure sensors[J]. Journal of Tongji University (Natural Science),2020,48(8):1199-1207. [68] HAN W,XIONG L,YU Z. Analysis and optimization of minimum hydraulic brake-by-wire system for wheeled vehicles based on queueing theory[J]. IEEE Transactions on Vehicular Technology,2021,70(12):12491-12505. [69] ZHAO X,LI L,SONG J,et al. Linear control of switching valve in vehicle hydraulic control unit based on sensorless solenoid position estimation[J]. IEEE Transactions on Industrial Electronics,2016,63(7):4073-4085. [70] JIANG G,MIAO X,WANG Y,et al. Real-time estimation of the pressure in the wheel cylinder with a hydraulic control unit in the vehicle braking control system based on the extended kalman filter[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2017,231(10):1340-1352. [71] LI J,DING M,YONG W,et al. Evaluation and optimization of the nonlinear flow controllability of switch valve in vehicle electro-hydraulic brake system[J]. IEEE Access,2018,6:31281-31293. [72] FEY W,ENGELMANN M,HEINZ M,et al. Method for determining the drive current for an actuator:U.S. Patent Application 10/566,782[P]. 2007-07-12. [73] TSENG C Y,LIN C F. A simple method for automotive switching-type solenoid valve stuck fault detection[J]. International Journal of Heavy Vehicle Systems,2007,14(1):20-35. [74] WU S,ZHAO X,LI C,et al. Multiobjective optimization of a hollow plunger type solenoid for high speed on/off valve[J]. IEEE Transactions on Industrial Electronics,2018,65(4):3115-3124. [75] ZHONG Q,ZHANG B,YANG H Y,et al. Performance analysis of a high-speed on/off valve based on an intelligent pulse-width modulation control[J]. Advances in Mechanical Engineering,2017,9(11):1-11. [76] ZHUO G,SHEN H,XUE R,et al. Open-loop characteristics analysis and control of high speed on-off valve:2018-01-1868[R]. SAE Technical Paper,2018. [77] 石蕾. ESC中线性电磁阀的动态特性研究及参数优化[D]. 秦皇岛:燕山大学,2013. SHI Lei. Research on the dynamic characteristics and optimize parameters of ESC linear solenoid valve[D]. Qinhuangdao:Yanshan University,2013. [78] CASTILLO J J,CABRERA J A,GUERRA A J,et al. A novel electrohydraulic brake system with tire–road friction estimation and continuous brake pressure control [J]. IEEE Transactions on Industrial Electronics,2015,63(3):1863-1875. [79] 张铭远. 基于maxwell气动流量比例电磁阀关键部件比例电磁铁的仿真研究[J]. 液压气动与密封,2021,41(8):78-83. ZHANG Mingyuan. Simulation research on proportional electromagnet of pneumatic flow proportional solenoid valve based on maxwell[J]. Hydraulics Pneumatics & Seals,2021,41(8):78-83. [80] 刘杨,孙泽昌,冀文斌. 电液复合制动系统踏板感觉及其影响因素[J]. 吉林大学学报(工学版),2015,45(4):1049-1055. LIU Yang,SUN Zechang,JI Wenbin. Brake pedal feeling and its influencing factors for electro-hydraulic brake system[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(4):1049-1055. [81] KAKIZOE K,BULL M. Real-world application of variable pedal feeling using an electric brake booster with two motors[J]. SAE International Journal of Advances and Current Practices in Mobility,2020,3:1020-1029. [82] ZHAO J,HU Z,ZHU B. Regenerative braking pedal decoupling control for hydraulic brake system equipped with an electro-mechanical brake booster:2019-01-1108[R]. SAE Technical Paper,2019. [83] CALISKAN U. A series elastic brake pedal for improving driving performance under regenerative braking[D]. Istanbnl:Sabancl University,2019. [84] 刘宏伟,刘伟,林光钟,等. 线控制动系统踏板感觉模拟器设计与改进[J]. 浙江大学学报(工学版),2018,52(12):2271-2278. LIU Hongwei,LIU Wei,LIN Guangzhong,et al. Design and improvement of brake pedal feel emulator in electro-hydraulic brake system[J]. Journal of Zhejiang University (Engineering Science),2018,52(12):2271-2278. [85] MA C,WANG X,XU T,et al. Research on a novel electro-hydraulic brake system and pedal feel control strategy[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2023,237(7):1681-1694. [86] 王梦春. 轻型线控制动汽车执行系统传感器故障诊断与整车稳定性协调控制[D]. 长春:吉林大学,2013. WANG Mengchun. Fault diagnosis of the brake-by-wire actuators sensors and coordination control of vehicle stability[D]. Changchun:Jilin University,2013. [87] FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy:A survey and some new results[J]. Automatica,1990,26(3):459-474. [88] HWANG W,HUH K S,KIM M,et al. Sensor fault diagnosis for EMB using parity space approach:2012-01-1794[R]. SAE Technical Papers,2012. [89] HUA Y,XU Y-N. Study on sensor fault-tolerant control based on analytical reconstruction model for EMB system[C]//KUT Inter⁃national Conference for the 70th foundation Anniversary,2018:1-9. [90] HE R,LI J,HUANG C,et al. Fault detection approach to EMB sensors based on dedicated observers[C]//2011 International Conference on Electric Information and Control Engineering. IEEE,2011:3266-3269. [91] HWANG W,HUH K. Fault detection and estimation for electromechanical brake systems using parity space approach[J]. Journal of Dynamic Systems,Measurement,Control,2015,137(1):1-7. [92] XU Y,DENG W. Research of multiple sensors adaptive fault-tolerant control based on TS fuzzy model for EMB system[J]. International Journal of Engineering Technology,2015,7(1):65. [93] YU Z,XU Y. Research of sensor fault detection and diagnosis for EMB system based on CSA-SVM model[J]. International Journal of Engineering Technology,2015,7(4):349. [94] WU B,ZHU Y,DONG R,et al. Pre-braking behaviors analysis based on hilbert-huang transform:Effect of driving experience,gender,and physique on decomposed motion[J]. Gender,Physique on Decomposed Motion,2022,9:1-24. [95] ZHU B,ZHANG Y,ZHAO J,et al. Personalized control strategy of electronic brake booster with driving behaviors identification[J]. IEEE Transactions on Vehicular Technology,2021,70(12):12593-12603. [96] 田海舰. 智能电动汽车电动助力制动系统个性化控制策略研究[D]. 长春:吉林大学,2020. TIAN Haijian. Research on personalized control strategy of electric booster braking system for intelligent electric vehicle[D]. Changchun:Jilin University,2020. [97] BUTAKOV V A,IOANNOU P. Personalized driver/vehicle lane change models for ADAS[J]. IEEE Transactions on Vehicular Technology,2014,64(10):4422-4431. [98] HAULT-DUBRULLE A,ROBACHE F,PACAUX M P,et al. Determination of pre-impact occupant postures and analysis of consequences on injury outcome. Part I:A driving simulator study[J]. Accident Analysis Prevention,2011,43(1):66-74. [99] FOUNTAS G,PANTANGI S S,HULME K F,et al. The effects of driver fatigue,gender,and distracted driving on perceived and observed aggressive driving behavior:A correlated grouped random parameters bivariate probit approach[J]. Analytic methods in accident research,2019,22:100091. [100] LYU N,CAO Y,WU C,et al. The effect of gender,occupation and experience on behavior while driving on a freeway deceleration lane based on field operational test data[J]. Accident Analysis Prevention,2018,121:82-93. [101] LYU N,XIE L,WU C,et al. Driver's cognitive workload and driving performance under traffic sign information exposure in complex environments:A case study of the highways in China[J]. International Journal of Environmental Research Public Health,2017,14(2):203. [102] LI G,LI S E,CHENG B,et al. Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities[J]. Transportation Research Part C:Emerging Technologies,2017,74:113-125. [103] MIYAJIMA C,NISHIWAKI Y,OZAWA K,et al. Cepstral analysis of driving behavioral signals for driver identification[C/CD]//2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. IEEE,2006. [104] JOHNSON D A,TRIVEDI M M. Driving style recognition using a smartphone as a sensor platform[C]//201114th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE,2011:1609-1615. [105] LÓPEZ J O,PINILLA A C C. Driver behavior classification model based on an intelligent driving diagnosis system[C]//201215th International IEEE Conference on Intelligent Transportation Systems. IEEE,2012:894-899. [106] XU L,HU J,JIANG H,et al. Establishing style-oriented driver models by imitating human driving behaviors[J]. IEEE Transactions on Intelligent Transportation Systems,2015,16(5):2522-2530. [107] DENG C,WU C,LYU N,et al. Driving style recognition method using braking characteristics based on hidden markov model[J]. PloS one,2017,12(8):e0182419. [108] CICCHINO J B. Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates[J]. Accident Analysis Prevention,2017,99:142-152. [109] XU X,GRIZZLE J W,TABUADA P,et al. Correctness guarantees for the composition of lane keeping and adaptive cruise control[J]. IEEE Transactions on Automation Science Engineering,2017,15(3):1216-1229. [110] CHEN Z,ZHU B,ZHAO J,et al. Variable servo characteristic brake system matching and implementing method based on driving style identification[J]. IEEE Transactions on Transportation Electrification,2022,9(1):45-59. [111] XIANG W,RICHARDSON P C,ZHAO C,et al. Automobile brake-by-wire control system design and analysis[J]. IEEE Transactions on Vehicular Technology,2022,57(1):138-145. [112] 何祥坤,杨恺明,季学武,等. 基于集成式线控液压制动系统的车辆稳定性控制[J]. 汽车安全与节能学报,2017,8(2):170-177. HE Xiangkun,YANG Kaiming,JI Xuewu,et al. Vehicle stability control based on integrated-electro-hydraulic brake system[J]. Journal of Automotive Safety and Energy,2017,8(2):170-177. [113] 秦浩. 线控制动车辆的横向稳定性控制策略研究[D]. 长沙:湖南大学,2021. QIN Hao. Research on lateral stability control strategy for vehicles with the brake-by-wire system[D]. Changsha:Hunan University,2021. [114] 陈佳瑶. 线控制动车辆弯道制动力优化分配控制策略研究[D]. 长沙:湖南大学,2019. CHEN Jiayao. Optimal braking force allocation for vehicles with the brake-by-wire system during a braking-in-turn maneuver[D]. Changsha:Hunan University,2021. [115] 陈志成. 基于集成式线控制动系统的智能汽车纵侧向耦合运动控制研究[D]. 长春:吉林大学,2022. CHEN Zhicheng. Research on longitudinal and lateral coupling motion control of intelligent vehicle based on integrated brake-by-wire system[D]. Changchun:Jilin University,2022. [116] 采国顺,刘昊吉,冯吉伟,等. 智能汽车的运动规划与控制研究综述[J]. 汽车安全与节能学报,2021,12(3):279-297. CAI Guoshun,LIU Haoji,FENG Jiwei,et al. Review on the research of motion planning and control for intelligent vehicles[J]. Journal of Automotive Safety and Energy,2021,12(3):279-297. [117] TAVERNINI D,VACCA F,METZLER M,et al. An explicit nonlinear model predictive ABS controller for electro-hydraulic braking systems[J]. IEEE Transactions on Industrial Electronics,2020,67(5):3990-4001. [118] YOU S,GIL J,KIM W. Fixed-time slip control with extended-state observer using only wheel speed for anti-lock braking systems of electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(7):6368-6378. [119] 张晋华. 面向安全与舒适的汽车底盘协调控制方法研究[D]. 哈尔滨:哈尔滨工业大学,2021. ZHANG Jinhua. Research on vehicle chassis coordinated control for safety and comfort[D]. Harbin:Harbin Institute of Technology,2021. [120] ALEXANDER L R R. Tire road friction coefficient estimation[J]. Journal of Dynamic Systems Measurement & Control,2004,126(2):265-275. [121] 齐志权,刘昭度,时开斌,等. 基于汽车ABS/ASR/ACC集成化系统的ABS参考车速确定方法的研究[J]. 汽车工程,2003(6):617-620. QI Zhiquan,LIU Zhaodu,SHI Kaibin,et al. Determination of vehicle reference speed for ABS based on an ABS/ASR/ACC integrated system[J]. Automotive Engineering,2003(6):617-620. [122] JIANG F,GAO Z. An adaptive nonlinear filter approach to the vehicle velocity estimation for ABS[C]//Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No. 00CH37162). IEEE,2000:490-495. [123] 任彦君,殷国栋,沙文瀚,等. 基于运动学信息融合的四轮驱动汽车纵向车速自适应估计方法[J]. 机械工程学报,2021,57(8):184-194. REN Yanjun,YIN Guodong,SHA Wenhan,et al. Longitudinal velocity adaptive estimation for four-wheel-drive vehicles via kinematic information fusion[J]. Journal of Mechanical Engineering,2021,57(8):184-194. [124] 郭洪艳,陈虹,高振海,等. 基于随机算法的级联车速观测器设计[J]. 吉林大学学报(工学版),2014,44(2):296-304. GUO Hongyan,CHEN Hong,GAO Zhenhai,et al. Design of cascaded vehicle velocity observer based on randomized algorithms[J]. Journal of Jilin University (Engineering and Technology Edition),2014,44(2):296-304. [125] ZHAO Z,CHEN H,YANG J,et al. Estimation of the vehicle speed in the driving mode for a hybrid electric car based on an unscented kalman filter[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of automobile engineering,2015,229(4):437-456. [126] BEVLY D M,RYU J,GERDES J C. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip,roll,and tire cornering stiffness[J]. IEEE Transactions on Intelligent Transportation Systems,2006,7(4):483-493. [127] CHENG Z,CHOW M Y,JUNG D,et al. A big data based deep learning approach for vehicle speed prediction[C]//2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). IEEE,2017:389-394. [128] KHALEGHIAN S,EMAMI A,TAHERI S. A technical survey on tire-road friction estimation[J]. Friction,2017,5(2):123-146. [129] BERNTORP K. Joint wheel-slip and vehicle-motion estimation based on inertial,GPS,and wheel-speed sensors[J]. IEEE Transactions on Control Systems Technology,2015,24(3):1020-1027. [130] 王博,孙仁云,徐延海,等. 考虑路面不平度的路面识别方法[J]. 机械工程学报,2012,48(24):127-133. WANG Bo,SUN Renyun,XU Yanhai,et al. Road surface condition identification approach with consideration of road roughness[J]. Journal of Mechanical Engineering,2012,48(24):127-133. [131] 李建华. 基于ESC控制系统的ABS控制策略研究及试验[D]. 长春:吉林大学,2010. LI Jianhua. Research of ABS Control strategy based on ESC control system and experiment[D]. Changchun:Jilin University,2010. [132] 王伟达,丁能根,张为,等. ABS逻辑门限值自调整控制方法研究与试验验证[J]. 机械工程学报,2010,46(22):90-95,104. WANG Weida,DING Nenggen,ZHANG Wei,et al. Research and verification of the logic threshold self-adjusting control method for ABS[J]. Journal of Mechanical Engineering,2010,46(22):90-95,104. [133] IVANOV V,SAVITSKI D,AUGSBURG K,et al. Electric vehicles with individually controlled on-board motors:Revisiting the ABS design[C]//2015 IEEE International Conference on Mechatronics (ICM). IEEE,2015:323-328. [134] SAVITSKI D,IVANOV V,AUGSBURG K,et al. The new paradigm of an anti-lock braking system for a full electric vehicle:Experimental investigation and benchmarking[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2016,230(10):1364-1377. [135] AKSJONOV A,VODOVOZOV V,AUGSBURG K,et al. Design of regenerative anti-lock braking system controller for 4 in-wheel-motor drive electric vehicle with road surface estimation[J]. International Journal of Automotive Technology,2018,19(4):727-742. [136] 陈志成,赵健,朱冰,等. 基于电控助力制动级联制动防抱死控制策略[J]. 汽车工程,2019,41(11):1320-1326. CHEN Zhicheng,ZHAO Jian,ZHU Bing,et al. Cascaded anti-lock brake control strategy based on electro-booster brake[J]. Automotive Engineering,2019,41(11):1320-1326. [137] 刘斌,施卫,常嘉伟,等. 纯电动智能汽车制动防抱死系统控制逻辑研究[J]. 电子技术应用,2022,48(1):100-104. LIU Bin,SHI Wei,CHANG Jiawei,et al. Research on control logic of anti-lock braking system of pure electric smart car[J]. Application of Electronic Technology,2022,48(1):100-104. [138] 刘晓辉,于良耀,郑晟,等. 基于电子助力器的冗余防抱死制动算法研究[J]. 汽车工程,2022,44(1):82-93. LIU Xiaohui,YU Liangyao,ZHENG Sheng,et al. Research on redundant anti-lock braking algorithm based on eBooster[J]. Automotive Engineering,2022,44(1):82-93. [139] LIU T,YU Z,XIONG L,et al. Anti-lock braking system control design on an integrated-electro-hydraulic braking system[J]. SAE International Journal of Vehicle Dynamics,Stability,NVH,2017,1:298-306. [140] 何祥坤,季学武,杨恺明,等. 基于集成式线控液压制动系统的轮胎滑移率控制[J]. 吉林大学学报(工学版),2018,48(2):364-372. HE Xiangkun,JI Xuewu,YANG Kaiming,et al. Tire slip control based on integrated-electro-hydraulic braking system[J]. Journal of Jilin University (Engineering and Technology Edition),2018,48(2):364-372. |
[1] | 刘海超, 刘红旗, 冯明, 李亮, 吴进军, 魏凌涛. 智能汽车集成式线控制动系统传动机构优化设计[J]. 机械工程学报, 2022, 58(20): 399-409. |
[2] | 张利鹏, 王胜, 袁心茂. 分布式驱动智能汽车对开坡道起步双重转向控制[J]. 机械工程学报, 2019, 55(20): 205-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||