机械工程学报 ›› 2024, Vol. 60 ›› Issue (10): 129-146.doi: 10.3901/JME.2024.10.129
戢杨杰1, 张馨雨1, 杨紫茹1, 周上航1, 黄岩军1, 曹建永2, 熊璐1, 余卓平1
收稿日期:
2023-11-18
修回日期:
2024-04-12
出版日期:
2024-05-20
发布日期:
2024-07-24
作者简介:
戢杨杰,男,1994年出生,博士研究生。主要研究方向为智能网联汽车,智能汽车决策规划。基金资助:
JI Yangjie1, ZHANG Xinyu1, YANG Ziru1, ZHOU Shanghang1, HUANG Yanjun1, CAO Jianyong2, XIONG Lu1, YU Zhuoping1
Received:
2023-11-18
Revised:
2024-04-12
Online:
2024-05-20
Published:
2024-07-24
摘要: 轨迹规划是自动驾驶汽车的基本功能。随着车用无线通信技术(Vehicle to everything,V2X)技术的发展,自动驾驶汽车具备智能网联功能,这些汽车被称为智能网联汽车。智能网联技术可以为自动驾驶汽车带来大量信息,增强不同自动驾驶汽车之间的合作,并为轨迹规划提供额外的优化空间,以减少驾驶时间,提高驾驶舒适性和安全性。与传统的单车轨迹规划相比,多车轨迹规划可以充分利用智能网联汽车的技术优势,为多个自动驾驶汽车规划合适的轨迹。以结构化场景和非结构化场景的分类综述典型的多车轨迹规划应用场景,总结不同的多车轨迹规划合作规划策略和特点。总结用于多车轨迹规划的各种方法,包括传统的流水线规划方法和端到端方法,并对多车轨迹规划的试验进行归纳。基于当前研究现状,提出多车轨迹规划面临的挑战和未来的研究方向,为智能交通系统领域的研究人员提供启发和参考。
中图分类号:
戢杨杰, 张馨雨, 杨紫茹, 周上航, 黄岩军, 曹建永, 熊璐, 余卓平. 多智能网联汽车轨迹规划:现状与展望[J]. 机械工程学报, 2024, 60(10): 129-146.
JI Yangjie, ZHANG Xinyu, YANG Ziru, ZHOU Shanghang, HUANG Yanjun, CAO Jianyong, XIONG Lu, YU Zhuoping. Trajectory Planning of Multi-intelligent Connected Vehicles: The State of the Art and Perspectives[J]. Journal of Mechanical Engineering, 2024, 60(10): 129-146.
[1] World Health Organization. Health at a glance:Asia/Pacific[M]. Paris:OECD Publishing,2012. [2] National Highway Traffic Safety Administration. National motor vehicle crash causation survey:Report to congress[J]. National Highway Traffic Safety Administration Technical Report DOT HS,2008,811:59. [3] On-Road Automated Driving (ORAD) Committee. SAE J3016_202104 Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[S]. Warrendale:SAE International,2021. [4] KIM H,CHOI Y. Location estimation of autonomous driving robot and 3D tunnel mapping in underground mines using pattern matched LiDAR sequential images[J]. International Journal of Mining Science and Technology,2021,31(5) :779-788. [5] 中华人民共和国工业和信息化部. 智能网联汽车技术路线图[R]. 北京:工业和信息化部,2018. Ministry of Industry and Information Technology of the People's Republic of China. Technology roadmap for intelligent networked vehicles[R]. Beijing:Ministry of Industry and Information Technology,2018. [6] 王飞跃, 曹东璞, 李升波,等. 自动驾驶技术的挑战与展望[J]. 人工智能, 2018(6):111-119. WANG Feiyue,CAO Dongpu,LI Shengbo,et al. Challenges and prospects of automatic driving technology[J]. Artificial Intelligence,2018(6):111-119. [7] 杨俊儒,褚端峰,陆丽萍,等. 智能汽车人机共享控制研究综述[J]. 机械工程学报,2022,58(18):31-55. YANG Junru, CHU Duanfeng, LU Liping, et al. Review on human-machine shared control of intelligent vehicles[J]. Journal of Mechanical Engineering, 2022, 58(18): 31-55. [8] ZHANG E,MASOUD N. V2xsim:A V2X simulator for connected and automated vehicle environment simulation[C]//IEEE 23rd International Conference on Intelligent Transportation Systems,September 20-23,2020,Virtual event. New York:IEEE,2020:1-6. [9] CHU Wenbo,WUNIRI Qiqige,DU Xiaoping,et al. Cloud control system architectures,technologies and applications on intelligent and connected vehicles:A review[J]. Chinese Journal of Mechanical Engineering,2021,34(5):19-41. [10] ZHAO Hang,GAO Jiyang,LAN Tian,et al. Tnt:Target-driven trajectory prediction[C]//5th Annual Conference on Robot Learning,November 8-11,2021,London,UK. Needham,MA:Robot Learning Foundation,Inc.,2021:895-904. [11] WANG Yijing,LIU Zhengxuan,ZUO Zhiqiang,et al. Trajectory planning and safety assessment of autonomous vehicles based on motion prediction and model predictive control[J]. IEEE Transactions on Vehicular Technology,2019,68(9):8546-8556. [12] AYAWLI B B K,CHELLALI R,APPIAH A Y,et al. An overview of nature-inspired,conventional,and hybrid methods of autonomous vehicle path planning[J]. Journal of Advanced Transportation,2018,2018(1):1-27. [13] DIXIT S,FALLAH S,MONTANARO U,et al. Trajectory planning and tracking for autonomous overtaking:State-of-the-art and future prospects[J]. Annual Reviews in Control,2018,45:76-86. [14] CLAUSSMANN L,REVILLOUD M,GRUYER D,et al. A review of motion planning for highway autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems,2019,21(5):1826-1848. [15] TENG Siyu,HU Xuemin,DENG Peng,et al. Motion planning for autonomous driving:The state of the art and future perspectives[J]. IEEE Transactions on Intelligent Vehicles,2023,8(6):3692-3711. [16] ESKANDARIAN A,WU Chaoxian,SUN Chuanyang. Research advances and challenges of autonomous and connected ground vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2019,22(2):683-711. [17] YURTSEVER E,LAMBERT J,CARBALLO A,et al. A survey of autonomous driving:Common practices and emerging technologies[J]. IEEE Access,2020,8:58443-58469. [18] 采国顺,刘昊吉,冯吉伟,等. 智能汽车的运动规划与控制研究综述[J]. 汽车安全与节能学报,2021,12(3):279-297. CAI Guoshun,LIU Haoji,FENG Jiwei,et al. Review on the research of motion planning and control for intelligent vehicles[J]. Journal of Automotive Safety and Energy,2021,12(3):279-297. [19] OKAMOTO K,TSIOTRAS P. Optimal stochastic vehicle path planning using covariance steering[J]. IEEE Robotics and Automation Letters,2019,4(3):2276-2281. [20] YAO Zhihong,JIANG Haoran,CHENG Yang,et al. Integrated schedule and trajectory optimization for connected automated vehicles in a conflict zone[J]. IEEE Transactions on Intelligent Transportation Systems,2020,23(3):1841-1851. [21] NA G,PARK G,TURRI V,et al. Disturbance observer approach for fuel-efficient heavy-duty vehicle platooning[J]. Vehicle System Dynamics,2020,58(5):748-767. [22] GUO Hongyan,LIU Jun,DAI Qikun,et al. A distributed adaptive triple-step nonlinear control for a connected automated vehicle platoon with dynamic uncertainty[J]. IEEE Internet of Things Journal,2020,7(5):3861-3871. [23] GAO Li,CHU Duanfeng,CAO Yongxing,et al. Multi-lane convoy control for autonomous vehicles based on distributed graph and potential field[C]//IEEE 22nd International Conference on Intelligent Transportation Systems,October 27-30,2019,Grafton,Auckland. New York:IEEE,2019:2463-2469. [24] YANG Yu,MA Fangwu,WANG Jiawei,et al. Cooperative ecological cruising using hierarchical control strategy with optimal sustainable performance for connected automated vehicles on varying road conditions[J]. Journal of Cleaner Production,2020,275:123056. [25] AWAL T,MURSHED M,ALI M. An efficient cooperative lane-changing algorithm for sensor-and communication-enabled automated vehicles[C]//IEEE Intelligent Vehicles Symposium,June 28-July 1,2015,Seoul,South Korea. New York:IEEE,2015:1328-1333. [26] HUANG Changyao,LI Liang,FANG Shengnan,et al. Energy saving performance improvement of intelligent connected PHEVs via NN-based lane change decision[J]. Science China Technological Sciences,2021,64(6):1203-1211. [27] 李柏. 复杂约束下自动驾驶车辆运动规划的计算最优控制方法研究[D]. 杭州:浙江大学,2018. LI Bai. Research on computational optimal control methods for automated vehicle motion planning problems with complicated constraints[D]. Hangzhou:Zhejiang University,2018. [28] CAI Mengchi,XU Qing,CHEN Chaoyi,et al. Formation control for multiple connected and automated vehicles on multi-lane roads[C]//IEEE 24th International Conference on Intelligent Transportation Systems,September 19-22,2021,Indianapolis,USA. New York:IEEE,2021:1940-1945. [29] ZHENG Yuan,RAN Bin,QU Xu,et al. Cooperative lane changing strategies to improve traffic operation and safety nearby freeway off-ramps in a connected and automated vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems,2019,21(11):4605-4614. [30] LIAO Xishun,WANG Ziran,ZHAO Xuanpeng,et al. Cooperative ramp merging design and field implementation:A digital twin approach based on vehicle-to-cloud communication[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(5):4490-4500. [31] ZHU Jie,TASIC I. Safety analysis of freeway on-ramp merging with the presence of autonomous vehicles[J]. Accident Analysis & Prevention,2021,152:105966. [32] CHEN Ying,E Wenjuan,WANG Xiang,et al. Multi-vehicle cooperative merging control strategy for expressway under new mixed traffic environment[C]//IEEE 7th International Conference on Intelligent Transportation Engineering,November 11-13,2022,Beijing,China. New York:IEEE,2022:603-608. [33] EL A K Z,AKNINE S,BACHA R. Novel decision-making strategy for connected and autonomous vehicles in highway on-ramp merging[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(8):12490-12502. [34] LIU Jinqiang,ZHAO Wanzhong,XU Can. An efficient on-ramp merging strategy for connected and automated vehicles in multi-lane traffic[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(6):5056-5067. [35] CAI Mengchi,XU Qing,CHEN Chaoyi,et al. Formation control for connected and automated vehicles on multi-lane roads:Relative motion planning and conflict resolution[J]. IET Intelligent Transport Systems,2023,17(1):211-226. [36] ZHOU Yue,CHOLETTE M E,BHASKAR A,et al. Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging[J]. IEEE Transactions on Intelligent Transportation Systems,2018,20(9):3409-3420. [37] 刘畅. 匝道合流区智能网联多车协调规划与控制研究[D]. 南京:东南大学,2021. LIU Chang. Coordination and control of multiple connected and automated vehicles for cooperative on-ramps merging[D]. Nanjing:Southeast University,2021. [38] CHEN Lei,ENGLUND C. Cooperative intersection management:A survey[J]. IEEE Transactions on Intelligent Transportation Systems,2015,17(2):570-586. [39] LI Guofa,LI Shenglong,LI Shen,et al. Deep reinforcement learning enabled decision-making for autonomous driving at intersections[J]. Automotive Innovation,2020,3:374-385. [40] DRESNER K,STONE P. A multiagent approach to autonomous intersection management[J]. Journal of Artificial Intelligence Research,2008,31:591-656. [41] LIU Bing,SHI Qing,SONG Zhuoyue,et al. Trajectory planning for autonomous intersection management of connected vehicles[J]. Simulation Modelling Practice and Theory,2019,90:16-30. [42] LI Bai,ZHANG Youmin,ZHANG Yue,et al. Near-optimal online motion planning of connected and automated vehicles at a signal-free and lane-free intersection[C]//IEEE Intelligent Vehicles Symposium,June 26-30,2018,Changshu,China. New York:IEEE,2018:1432-1437. [43] ZHANG Xiang,WANG Boyang,LU Yaomin,et al. A hierarchical multi-vehicle coordinated motion planning method based on interactive spatio-temporal corridors[J]. IEEE Transactions on Intelligent Vehicles,2023,9(1):2675-2687. [44] TAJALLI M,HAJBABAIE A. Traffic signal timing and trajectory optimization in a mixed autonomy traffic stream[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(7):6525-6538. [45] LI Nan,YAO Yu,KOLMANOVSKY I,et al. Game-theoretic modeling of multi-vehicle interactions at uncontrolled intersections[J]. IEEE Transactions on Intelligent Transportation Systems,2020,23(2):1428-1442. [46] KAMAL M A S,IMURA J,HAYAKAWA T,et al. A vehicle-intersection coordination scheme for smooth flows of traffic without using traffic lights[J]. IEEE Transactions on Intelligent Transportation Systems,2014,16(3):1136-1147. [47] LI Bai,ZHANG Youmin,JIA Ning,et al. Autonomous intersection management over continuous space:A microscopic and precise solution via computational optimal control[J]. IFAC-Papers,2020,53(2):17071-17076. [48] PATEL D S. Motion planning for autonomous vehicles in non-signalized intersections[D]. Blacksburg:Virginia Tech.,2023. [49] ZHANG Yixiao,HAO Rui,ZHANG Tingting,et al. A trajectory optimization-based intersection coordination framework for cooperative autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(9):14674-14688. [50] SHI Yanjun,LIU Yuanzhuo,QI Yuhan,et al. A control method with reinforcement learning for urban un-signalized intersection in hybrid traffic environment[J]. Sensors,2022,22(3):779. [51] 李柏,葛雨明. 智能网联汽车协同决策与规划技术[M]. 北京:机械工业出版社,2020. LI Bai,GE Yuming. Collaborative decision making and planning technology for intelligent networked vehicles [M]. Beijing:China Machine Press,2020. [52] COGILL R,GALLAY O,GRIGGS W,et al. Parked cars as a service delivery platform[C]//International Conference on Connected Vehicles and Expo,November 3-7,2014,Vienna,Austria. New York:IEEE,2014:138-143. [53] LI Bai,ZHANG Youmin,SHAO Zhijiang,et al. Simultaneous versus joint computing:A case study of multi-vehicle parking motion planning[J]. Journal of Computational Science,2017,20:30-40. [54] WU Bing,QIAN Lijun,LU Meiling,et al. Optimal control problem of multi‐vehicle cooperative autonomous parking trajectory planning in a connected vehicle environment[J]. IET Intelligent Transport Systems,2019,13(11):1677-1685. [55] 孟文璐. 面向自动停车场景的全局逼近与局部泊车路径规划方法[D]. 大连:大连理工大学,2022. MENG Wenlu. Global approximation and local parking path planning methods for automatic parking scene[D]. Dalian:Dalian University of Technology,2022. [56] KNEISSL M,MADHUSUDHANAN A K,MOLIN A,et al. A multi-vehicle control framework with application to automated valet parking[J]. IEEE Transactions on Intelligent Transportation Systems,2020,22(9):5697-5707. [57] LI Bai,OUYANG Yakun,LI Xiaohui,et al. Mixed-integer and conditional trajectory planning for an autonomous mining truck in loading/dumping scenarios:A global optimization approach[J]. IEEE Transactions on Intelligent Vehicles,2022,8(2):1512-1522. [58] TIAN Fangyin,ZHOU Rui,LI Zhiheng,et al. Trajectory planning for autonomous mining trucks considering terrain constraints[J]. IEEE Transactions on Intelligent Vehicles,2021,6(4):772-786. [59] GUO Y,YAO D,LI Bai,et al. Trajectory planning for an autonomous vehicle in spatially constrained environments[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(10):18326-18336. [60] 胡满江,牟斌杰,杨泽宇,等. 基于DBSCAN与二分法的混合A* 路径规划方法[J]. 汽车工程,2023,45(3):341-349. HU Manjiang,MOU Binjie,YANG Zeyu,et al. A hybrid A* path planning method based on DBSCAN and dichotomy[J]. Automotive Engineering,2023,45(3):341-349. [61] GUN P. Multi vehicle trajectory planning on road networks[D]. Sydney:University of Sydney,2020. [62] AZUMA S,YOSHIMURA R,SUGIE T. Broadcast control of multi-agent systems[J]. Automatica,2013,49(8):2307-2316. [63] JING Shoucai,HUI Fei,ZHAO Xiangmo,et al. Cooperative game approach to optimal merging sequence and on-ramp merging control of connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(11):4234-4244. [64] LUO Jiping,ZHANG Tingting,HAO Rui,et al. Real-time cooperative vehicle coordination at unsignalized road intersections[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(5):5390-5405. [65] PEI Huaxin,FENG Shuo,ZHANG Yi,et al. A cooperative driving strategy for merging at on-ramps based on dynamic programming[J]. IEEE Transactions on Vehicular Technology,2019,68(12):11646-11656. [66] CAI Mengchi,XU Qing,CHEN Chaoyi,et al. Multi-lane unsignalized intersection cooperation with flexible lane direction based on multi-vehicle formation control[J]. IEEE Transactions on Vehicular Technology,2022,71(6):5787-5798. [67] DULAI T,WERNER-STARK A,HANGOS K M. Algorithm for directing cooperative vehicles of a vehicle routing problem for improving fault-tolerance[J]. Optimization and Engineering,2018,19:239-270. [68] MIRHELI A,TAJALLI M,HAJIBABAI L,et al. A consensus-based distributed trajectory control in a signal-free intersection[J]. Transportation Research Part C:Emerging Technologies,2019,100:161-176. [69] WANG Hua,MENG Qiang,CHEN Shukai,et al. Competitive and cooperative behaviour analysis of connected and autonomous vehicles across unsignalised intersections:A game-theoretic approach[J]. Transportation Research Part B:Methodological,2021,149:322-346. [70] FUKUYAMA S. Dynamic game-based approach for optimizing merging vehicle trajectories using time-expanded decision diagram[J]. Transportation Research Part C:Emerging Technologies,2020,120:102766. [71] CHOI H J,KIM Y D,KIM H J. Genetic algorithm based decentralized task assignment for multiple unmanned aerial vehicles in dynamic environments[J]. International Journal of Aeronautical and Space Sciences,2011,12(2):163-174. [72] PEI Huaxin,ZHANG Jiawei,ZHANG Yi,et al. Fault-tolerant cooperative driving at signal-free intersections[J]. IEEE Transactions on Intelligent Vehicles,2022,8(1):121-134. [73] LI Duowei,ZHU Feng,CHEN Tianyi,et al. COOR-PLT:A hierarchical control model for coordinating adaptive platoons of connected and autonomous vehicles at signal-free intersections based on deep reinforcement learning[J]. Transportation Research Part C:Emerging Technologies,2023,146:103933. [74] ZHANG Yixiao,HAO Rui,GAO Bo,et al. A collision-free coordination framework for mixed-vehicle intersections[C]//IEEE 94th Vehicular Technology Conference,September 27-30,2021,Online. New York:IEEE,2021:1-6. [75] LI Donglin,ZHANG Tingting,LUO Jiping,et al. A tightly coupled Bi-level coordination framework for CAVs at road intersections[J]. IEEE Transactions on Intelligent Transportation Systems,2024(16):1558. [76] 马志强,张希铭,张明,等. 基于无线通信的智能泊车系统设计[J]. 测控技术,2013,32(1):104-108. MA Zhiqiang,ZHANG Ximing,ZHANG Ming,et al. Design of intelligent parking system based on wireless communication[J]. Measurement & Control Technology,2013,32(1):104-108. [77] JANK G,ROWOLD M,LOHMANN B. Hierarchical time-optimal planning for multi-vehicle racing[C]//IEEE 26th International Conference on Intelligent Transportation Systems,September 24-28,2023,Bilbao,Spain. New York:IEEE,2023:2064-2069. [78] LI Bai,ACARMAN T,ZHANG Youmin,et al. Optimization-based trajectory planning for autonomous parking with irregularly placed obstacles:A lightweight iterative framework[J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(8):11970-11981. [79] FENG Yiheng,YU Chunhui,LIU H X. Spatiotemporal intersection control in a connected and automated vehicle environment[J]. Transportation Research Part C:Emerging Technologies,2018,89:364-383. [80] DOLGOV D,THRUN S,MONTEMERLO M,et al. Path planning for autonomous vehicles in unknown semi-structured environments[J]. The International Journal of Robotics Research,2010,29(5):485-501. [81] 刘东升,王俊生. 非结构化环境中基于拓扑约束的地面无人驾驶路径规划算法[J]. 控制与决策,2022,37(12):3103-3114. LIU Dongsheng,WANG Junsheng. Path planning algorithm for ground unmanned vehicles based on topological constraints in unstructured environments[J]. Control and Decision,2022,37(12):3103-3114. [82] YAO Zhihong,JIANG Haoran,CHENG Yang,et al. Integrated schedule andtrajectory optimization for connected automated vehicles in a conflict zone[J]. IEEE Transactions on Intelligent Transportation Systems,2020,23(3):1841-1851. [83] WANG Boyang,LU Yaomin,ZHANG Tingrui,et al. Multi-vehicle coordinated motion planning based on interactive primitive tree[C]//2021 IEEE International Conference on Unmanned Systems,October 15-17,2021,Beijing,China. New York:IEEE,2021:51-57. [84] KUFFNER J J,LAVALLE S M. RRT-connect:An efficient approach to single-query path planning[C]//IEEE International Conference on Robotics and Automation,April 24-28,2000,San Francisco,USA. New York:IEEE,2000:995-1001. [85] KARAMAN S,FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research,2011,30(7):846-894. [86] ADIYATOV O,VAROL H A. Rapidly-exploring random tree based memory efficient motion planning[C]//IEEE international conference on mechatronics and automation,August 04-07,2013,Takamatsu,Japan. New York:IEEE,2013:354-359. [87] NASIR J,ISLAM F,MALIK U,et al. RRT*-SMART:A rapid convergence implementation of RRT[J]. International Journal of Advanced Robotic Systems,2013,10(7):299. [88] ARSLAN O,TSIOTRAS P. Use of relaxation methods in sampling-based algorithms for optimal motion planning[C]//IEEE International Conference on Robotics and Automation,May 06-10,2013,Karlsruhe,Germany. New York:IEEE,2013:2421-2428. [89] DUAN Xuting,SUN Chen,TIAN Daxin,et al. Cooperative lane-change motion planning for connected and automated vehicle platoons in multi-lane scenarios[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(7):7073-7091. [90] LIU Qingquan,LIN Xi,LI Meng,et al. Coordinated lane-changing scheduling of multilane CAV platoons in heterogeneous scenarios[J]. Transportation Research Part C:Emerging Technologies,2023,147:103992. [91] LUKYANENKO A,CAMPHIRE H,AUSTIN A,et al. Optimal localized trajectory planning of multiple non-holonomic vehicles[C]//IEEE Conference on Control Technology and Applications,August 09-11,2021,San Diego,USA. New York:IEEE,2021:820-825. [92] GUAN Yang,REN Yanggang,LI Shengbo,et al. Centralized cooperation for connected and automated vehicles at intersections by proximal policy optimization[J]. IEEE Transactions on Vehicular Technology,2020,69(11):12597-12608. [93] HAN Songyang,WANG He,SU Sanbao,et al. Stable and efficient Shapley value-based reward reallocation for multi-agent reinforcement learning of autonomous vehicles[C]//International Conference on Robotics and Automation,May 23-27,2022,Philadelphia,USA. New York:IEEE,2022:8765-8771. [94] JIANG Jianhua,REN Yangang,GUAN Yang,et al. Integrated decision and control at multi-lane intersections with mixed traffic flow[C]//International Symposium on Intelligent Robotics and Systems,November 07-09,2021, Online. Bristol:Journal of Physics,2022,2234(1):012015. [95] AFIFI A M,ALHOSAINY O H,ELIAS C M,et al. Deep policy-gradient based path planning and reinforcement cooperative Q-learning behavior of multi-vehicle systems[C]//IEEE International Conference on Vehicular Electronics and Safety,September 04-06,2019,Cairo,Egypt. New York:IEEE,2019:1-7. [96] ANTONIO G P,MARIA-DOLORES C. Multi-agent deep reinforcement learning to manage connected autonomous vehicles at tomorrow's intersections[J]. IEEE Transactions on Vehicular Technology,2022,71(7):7033-7043. [97] CHEN Chaoyi,XU Qing,CAI Mengchi,et al. A graph-based conflict-free cooperation method for intelligent electric vehicles at unsignalized intersections[C]//IEEE International Intelligent Transportation Systems Conference,September 19-22,2021,Indianapolis,USA. New York:IEEE,2021:52-57. [98] ZHAO Zhouqiao,WU Guoyuan,WANG Ziran,et al. Optimal control-based eco-ramp merging system for connected and automated vehicles[C]//IEEE Intelligent Vehicles Symposium,October 19-November 13,2020,Las Vegas,USA. New York:IEEE,2020:540-546. [99] CHENG Xiangchen,TANG Wei,YANG Ming,et al. Vehicle sequencing at signal-free intersections:Analytical performance guarantees based on PDMP formulation[EB/OL]. [2023-11-27]. https://arxiv.org/abs/2303.11646. [100] 李浩. 基于元强化学习的无人驾驶车辆行为决策研究[D]. 大连:大连理工大学,2021. LI Hao. Research on behavior decision making of self-driving vehicle based on meta reinforcement learning[D]. Dalian:Dalian University of Technology,2021. [101] 姜岩,王琦,龚建伟,等. 无人驾驶车辆局部路径规划的时间一致性与鲁棒性研究[J]. 自动化学报,2015,41(3):518-527. JIANG Yan,WANG Qi,GONG Jianwei,et al. Study on time consistency and robustness of localized path planning for driverless vehicles[J]. Acta Automatica Sinica,2015,41(3):518-527. [102] FU Siyu,ZHANG Wei,JIANG Zhiyuan. A network-level connected autonomous driving evaluation platform implementing C-V2X technology[J]. China Communications,2021,18(6):77-88. [103] VEMPRALA S,SARIPALLI S. Vision based collaborative path planning for micro aerial vehicles[C]//IEEE International Conference on Robotics and Automation,May 21-25,2018,Brisbane,Australia. New York:IEEE,2018:3889-3895. [104] KESSLER T,ESTERLE K,KNOLL A. Mixed-integer motion planning on German roads within the Apollo driving stack[J]. IEEE Transactions on Intelligent Vehicles,2022,8(1):851-867. [105] ZHANG Hengrui,LIN Youfang,HAN Sheng,et al. Lexicographic actor-critic deep reinforcement learning for urban autonomous driving[J]. IEEE Transactions on Vehicular Technology,2022,72(4):4308-4319. [106] HIRATA M,TSUKADA M,OKUMURA K,et al. Roadside-assisted cooperative planning using future path sharing for autonomous driving[C]//IEEE 94th Vehicular Technology Conference,September 27-30,2021,Norman,USA. New York:IEEE,2021:1-7. [107] PEI Huaxin,ZHANG Jiawei,ZHANG Yi,et al. Fault-tolerant cooperative driving at signal-free intersections[J]. IEEE Transactions on Intelligent Vehicles,2022,8(1):121-134. [108] SUN Yingbo,CHU Yuan,XU Tao,et al. Inverse reinforcement learning based:Segmented lane-change trajectory planning with consideration of interactive driving intention[J]. IEEE Transactions on Vehicular Technology,2022,71(11):11395-11407. [109] BAI Zhengwei,CAI Baigen,SHANGGUAN Wei,et al. Deep learning based motion planning for autonomous vehicle using spatiotemporal LSTM network[C]//Chinese Automation Congress,November 30-December 02,2018,Xi'an,China. New York:IEEE,2018:1610-1614. [110] KLIMKE M,VÖLZ B,BUCHHOLZ M. Cooperative behavior planning for automated driving using graph neural networks[C]//IEEE Intelligent Vehicles Symposium (IV),June 04-09,2022,Aachen,Germany. New York:IEEE,2022:167-174. [111] 乐方杰. 基于优先级图的路口多车通行策略研究[D]. 上海:上海交通大学,2019. LE Fangjie. Research on prioriny graph based strategy of malti-vehicle cooperation at intersections[D]. Shanghai:Shanghai Jiao Tong University,2019. [112] DU Haiping,TENG Siyu,CHEN Hong,et al. Chat with chatgpt on intelligent vehicles:An ieee tiv perspective[J]. IEEE Transactions on Intelligent Vehicles,2023,8(3):2020-2026. |
[1] | 申世全, 任锟, 李永国, 韩蕴生, 项琬婷, 耿赫阳. 金属表面异形区域上色轨迹自动规划[J]. 机械工程学报, 2024, 60(7): 258-265. |
[2] | 周晨, 徐飞翔. 四轮独立转向车辆转向模式切换轨迹多目标优化方法研究[J]. 机械工程学报, 2024, 60(6): 306-320. |
[3] | 张鹏, 尹来容, 仝永刚, 黄龙. 基于间隙预测模型的自动铺带轨迹优化方法[J]. 机械工程学报, 2024, 60(5): 296-316. |
[4] | 梁亮, 吴成东, 刘世昌. 基于关节损耗约束的工业机器人最优轨迹规划算法研究[J]. 机械工程学报, 2024, 60(19): 11-19. |
[5] | 王洪亮, 雍健羽, 皮大伟, 谢伯元, 王尔烈, 王显会. 基于贝塞尔曲线和多目标优化方法的多车队形切换轨迹规划[J]. 机械工程学报, 2024, 60(16): 270-279. |
[6] | 隗寒冰, 吴化腾, 徐进. 考虑驾驶员NMS特征的自动驾驶汽车人机共驾鲁棒横向控制[J]. 机械工程学报, 2024, 60(16): 280-290. |
[7] | 胡俊宇, 韩旭, 陶友瑞, 李珊瑚, 张建宁. 一种考虑跟随误差的S形轨迹残余振动抑制可靠性分析方法[J]. 机械工程学报, 2024, 60(16): 390-399. |
[8] | 张海伦, 许庆, 高博麟, 王建强, 李克强. 网联环境下驾驶人响应机制——一种交叉路口接近行为定性效应分析与定量驾驶模式提取案例[J]. 机械工程学报, 2024, 60(10): 22-47. |
[9] | 李琳, 赵万忠, 王春燕. 基于Bi-GLSTM网络的车辆驾驶意图分析与识别[J]. 机械工程学报, 2024, 60(10): 51-63. |
[10] | 白先旭, 潘宇翔, 陈浩, 李维汉, 石琴. 智能网联汽车预期功能安全风险评估3σ接受准则[J]. 机械工程学报, 2024, 60(10): 182-191. |
[11] | 梁凯冲, 赵治国, 颜丹姝, 赵坤. 基于动态运动基元的车辆高速公路换道轨迹规划[J]. 机械工程学报, 2024, 60(10): 192-206. |
[12] | 周洪龙, 裴晓飞, 刘一平, 赵柯帆. 面向动态不确定场景的自动驾驶车辆时空耦合分层轨迹规划研究[J]. 机械工程学报, 2024, 60(10): 222-234. |
[13] | 聂士达, 刘辉, 廖志昊, 谢雨佳, 项昌乐, 韩立金, 林思豪. 考虑复杂地形的越野环境无人车辆路径规划研究[J]. 机械工程学报, 2024, 60(10): 261-272. |
[14] | 陈晓明, 李柏, 范丽丽, 王涯舟, 张坦探, 张友民, 曹东璞. 基于半空间约束理论的自动泊车高性能轨迹优化方法[J]. 机械工程学报, 2024, 60(10): 273-288. |
[15] | 林晨, 魏洪乾, 荆威, 张幽彤. 汽车功能安全:面向敏感指令攻击场景的自主驾驶车辆路径规划风险缓解控制[J]. 机械工程学报, 2024, 60(10): 302-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||