[1] ZHUANG Hongchao,DONG Kailun,WANG Ning,et al. Multi-robot leader grouping consistent formation control method research with low convergence time based on nonholonomic constraints[J]. Applied Sciences,2022,12(5):1-19. [2] CHEN Yangquan,WANG Zhongmin. Formation control:A review and a new consideration[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton,AB,Canada:IEEE,2005:3181-3186. [3] OH K K,PARKM C,AHN H S. A survey of multi-agent formation control[J]. Automatica,2015,53:424-440. [4] BALCH T,ARKIN R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation,1998,14(6):926-939. [5] LAWTON J R T,BEARD R W,YOUNG B J. A decentralized approach to formation maneuvers[J]. IEEE Transactions on Robotics and Automation,2003,19(6):933-941. [6] DESAI J P. A graph theoretic approach for modeling mobile robot team formations[J]. Journal of Field Robotics,2002,19(11):511-525. [7] REN W,SORENSEN N. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems,2008,56(4):324-333. [8] KARRAS G C,BECHLIOULIS C P,FOURLAS G K,et al. A mixed-initiative formation control strategy for multiple quadrotors[J]. Robotics,2021,10(4):1-22. [9] XU Peng,TAO Jin,XU Minyi,et al. Practical formation control for multiple anonymous robots system with unknown nonlinear disturbances[J]. Applied Sciences,2021,11(19):1-14. [10] ELAAMERY B,PESAVENTO M,ALDOVINI T,et al. Model predictive control for cooperative transportation with feasibility-aware policy[J]. Robotics,2021,10(3):1-20. [11] RASHID M Z A,YAKUB F,ZAKI S A,et al. Comprehensive review on controller for leader-follower robotic system[J]. Indian Journal of Geo Marine Sciences,2019,48(7):985-1007. [12] DRAGANJAC I,MIKLIĆ D,KOVAČIĆ Z,et al. Decentralized control of multi-AGV systems in autonomous warehousing applications[J]. IEEE Transactions on Automation Science and Engineering,2016,13(4):1433-1447. [13] ZHU H,CLARAMUNT F M,BRITO B,et al. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments[J]. IEEE Robotics and Automation Letters,2021,6(2):2256-2263. [14] LUIS C E,VUKOSAVLJEV M,SCHOELLIG A P. Online trajectory generation with distributed model predictive control for multi-robot motion planning[J]. IEEE Robotics and Automation Letters,2020,5(2):604-611. [15] LIU Dejian,ZONG Chengguo,WANG Detang,et al. Multi-robot formation control based on high-order bilateral consensus[J]. Measurement and Control,2020,53(5-6):983-993. [16] BRIÑÓN-ARRANZ L,SEURET A,CANUDAS-DE- WIT C. Cooperative control design for time-varying formations of multi-robot systems[J]. IEEE Transactions on Automatic Control,2014,59(8):2283-2288. [17] YU Xiao,LIU Lu. Cooperative control for moving-target circular formation of nonholonomic vehicles[J]. IEEE Transactions on Automatic Control,2017,62(7):3448-3454. [18] 顾勇平,周华平,马宏绪. 多足机器人群控策略及可靠性问题[J]. 机器人,2002,24(2):140-143. GU Yongping,ZHOU Huaping,MA Hongxu. Group-control on multiped robot and method of reliability[J]. Robot,2002,24(2):140-143. [19] 詹惠轲,蒋刚,李鑫,等. 六足机器人多机可达空间协同越障仿真分析[J]. 机械设计与制造,2019,9:209-212. ZHAN Huike,JIANG Gang,LI Xin,et al. Simulation analysis of cooperative over-obstacle capability of multiple hexapod robots based on achievable workspace[J]. Machinery Design and Manufacture,2019,9:209-212. [20] 任立敏,王伟东,杜志江,等. 障碍环境下多移动机器人动态优化队形变换[J]. 机器人,2013,35(5):535-543. REN Limin,WANG Weidong,DU Zhijiang,et al. Dynamic and optimized formation switching for multiple mobile robots in obstacle environments[J]. Robot,2013,35(5):535-543. [21] JIA Yongnan,ZHANG Weicun. Distributed adaptive flocking of robotic fish system with a leader of bounded unknown input[J]. International Journal of Control,Automation and Systems,2014,12(5):1049-1058. [22] YOO S J,PARK B S. Connectivity preservation and collision avoidance in networked nonholonomic multi-robot formation systems:Unified error transformation strategy[J]. Automatica,2019,103(1):274-281. [23] CHEN B S,TSAI Y Y,LEE M Y. Robust decentralized formation tracking control for stochastic large-scale biped robot team system under external disturbance and communication requirements[J]. IEEE Transactions on Control of Network Systems,2021,8(2):654-666. [24] XIAO Hanzhen,CHEN C L P. Leader-follower consensus multi-robot formation control using neurodynamic- optimization-based nonlinear model predictive control[J]. IEEE Access,2019,7(1):43581-43590. [25] GE Xiaohua,HAN Qinglong,WANG Jun,et al. A scalable adaptive approach to multi-vehicle formation control with obstacle avoidance[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(6):990-1004. [26] ALONSO-MORA J,BAKER S,RUS D. Multi-robot formation control and object transport in dynamic environments via constrained optimization[J]. The International Journal of Robotics Research,2017,36(9):1000-1021. [27] MAI Chouyaun,LIAN Fengli. Analysis of formation control and communication pattern in multi-robot systems[C]//Proceedings of the 2006 SICE-ICASE International Joint Conference. Busan,Korea:IEEE,2006:640-645. [28] CRUZ C D L,CARELLI R. Dynamic model based formation control and obstacle avoidance of multi-robot systems[J]. Robotica,2008,26(3):345-356. [29] MCCLINTOCK J,FIERRO R. A hybrid system approach to formation reconfiguration in cluttered environments[C]//Proceedings of the 16th Mediterranean Conference on Control and Automation. Ajaccio,France:IEEE,2008:83-88. [30] BAI Chengchao,YAN Peng,PAN Wei,et al. Learning-based multi-robot formation control with obstacle avoidance[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(8):11811-11822. [31] OH H,SHIRAZI A R,SUN C,et al. Bio-inspired self-organising multi-robot pattern formation:A review[J]. Robotics and Autonomous Systems,2017,91:83-100. [32] ZHUANG Hongchao,GAO Haibo,DENG Zongquan,et al. A review of heavy-duty legged robots[J]. Science China-Technological Sciences,2014,57(2):298-314. [33] ZHUANG Hongchao,GAO Haibo,DENG Zongquan. Analysis method of articulated torque of heavy-duty six-legged robot under its quadrangular gait[J]. Applied Sciences,2016,6(11):1-21. [34] ZHUANG Hongchao,GAO Haibo,DING Liang,et al. Method for analyzing articulated torques of a heavy-duty six-legged robot[J]. Chinese Journal of Mechanical Engineering,2013,26(4):801-812. [35] ZHUANG Hongchao,WANG Ning,GAO Haibo,et al. Quickly obtaining range of articulated rotating speed for electrically driven large load-ratio six-legged robot based on maximum walking speed method[J]. IEEE Access,2019,7(1):29453-29470. [36] ZHUANG Hongchao,WANG Ning,GAO Haibo,et al. Autonomous fault-tolerant gait planning research for electrically driven large-load-ratio six-legged robot[C]//Proceedings of the 12th International Conference on Intelligent Robotics and Applications. Shenyang,China:Springer Cham,2019:231-244. [37] ZHUANG Hongchao,GAO Haibo,DENG Zongquan. Gait planning research for an electrically driven large-load-ratio six-legged robot[J]. Applied Sciences,2017,7(3):1-17. [38] 任立敏,王伟东,杜志江. 移动机器人队形控制关键技术及其进展[J]. 智能系统学报,2013,8(5):381-394. REN Limin,WANG Weidong,DU Zhijiang. Key technologies and development of formation control of mobile robots[J]. CAAI Transactions on Intelligent Systems,2013,8(5):381-394. |