[1] 丁文锋,奚欣欣,占京华,等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报,2019,40(6):6-41. DING Wenfeng, XI Xinxin,ZHAN Jinghua,et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronauticaet Astronautica Sinica,2019,40(6):6-41. [2] 郭萍,潘浩,贾国玉,等. 高载荷条件下TC17钛合金常规低周疲劳和保载疲劳损伤行为[J]. 稀有金属材料与工程,2022,51(1):301-305. GUO Ping,PAN Hao,JIA Guoyu,et al. Damage behavior of conventional low cycle fatigue and dwell fatigue of TC17 titanium alloy under high load[J]. Rare Metal Materials and Engineering,2022,51(1):301-305. [3] 刘广鑫,张定华,姚倡锋. 钛合金切削表层微观组织研究进展[J]. 机械工程学报,2021,57(15):231-245. LIU Guangxin,ZHANG Dinghua,YAO Changfeng. Research progress of the microstructure on machined surface of titanium Alloys[J]. Journal of Mechanical Engineering, 2021, 57(15):231-245. [4] Dandekar C R,Shin Y C,Barnes J. Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining[J]. International Journal of Machine Tools & Manufacture,2010,50(2):174-182. [5] Sun S, Brandt M, Dargusch M S. Thermally enhanced machining of hard-to-machine materials:A review[J]. International Journal of Machine Tools & Manufacture, 2010, 50(8):663-680. [6] Ahn J W, Woo W S, Lee C M. A study on the energy efficiency of specific cutting energy in laser-assisted machining[J]. Applied Thermal Engineering, 2016, 94:748-753. [7] Venkatesan K. The study on force,surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source[J]. Journal Advanced Research,2017,8(4):407-423. [8] Dargusch M S,Sivarupan T,Bermingham M,et al. Challenges in laser-assisted milling of titanium alloys[J]. International Journal of Extreme Manufacturing,2021,3(1):015001. [9] Sun S,Brandt M,barnes J E,et al. Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy[J]. Proceeding of The Institution of Mechanical Engineering Part B-Journal of Engineering Manufacture,2011,225(B9):1512-1527. [10] Rashid R A R,Sun S,Wang G,et al. An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti6Cr5Mo5V4Al beta titanium alloy[J]. International Journal of Machine Tools & Manufacture,2012,63:58-69. [11] KIM D H,LEE C M. Experimental investigation on machinability of titanium alloy by laser-assisted end milling[J]. Metals,2021,11(10):1552. [12] KALANTARI O,JAFARIAN F,FALLAH M M. Comparative investigation of surface integrity in laser assisted and conventional machining of Ti-6Al-4V alloy[J]. Journal of Manufacturing Processes,2021,62:90-98. [13] HE Y,XIAO G J,LI W,et al. Residual stress of TC17 titanium alloy after belt grinding and its impact on the fatigue life[J]. Materials,2018,11(11):2218. [14] XIAO G J,HUANG Y. Micro-stiffener surface characteristics with belt polishing processing for titanium alloys[J]. The International Journal of Advanced Manufacturing Technology,2019,100(1-4):349-359. [15] 肖贵坚,陈树林,李少川,等. 磨粒磨损对砂带磨削TC17表面完整性的影响研究[J]. 航空制造技术, 2022, 65(4):26-33. XIAO Guijian,CHEN Shulin,LI Shaochuan,et al. Study on influence of abrasive wear on surface integrity of TC17 grinding by abrasive belt[J]. Aeronautical Manufacturing Technology,2022,65(4):26-33. [16] 李征,刘莹,丁文锋. 不同CBN砂轮高速加工PTMCs的磨削性能对比[J]. 金刚石与磨料磨具工程,2020,40(5):5-10. LI Zheng,LIU Ying,DING Wenfeng. Comparing performance of CBN grinding wheels in high-speed grinding particulate reinforced titanium matrix composites[J]. Diamond & Abrasive Engineering,2020,40(5):5-10. [17] DING W F,ZHAO B,ZHANG Q L,et al. Fabrication and wear characteristics of open-porous CBN abrasive wheels in grinding of Ti-6Al-4V alloys[J]. Wear,2021,477:203786. [18] ZHOU K,DING H H,STEENBERGEN M,et al. Temperature field and material response as a function of rail grinding parameters[J]. International Journal of Heat and Mass Transfer,2021,175:121366. [19] He Z,Li J Y,Liu Y M,et al. Single-grain cutting based modeling of abrasive belt wear in cylindrical grinding[J]. Friction,2020,8(1):208-220. [20] Weber R,Graf T,Berger P V,et al. Heat accumulation during pulsed laser materials processing[J] Optics Express,2014,22(9):11312. [21] Hokkirigawa K,Kato K.,Li Z. The effect of hardness on the transition of the abrasive wear mechanism of steels[J]. Wear,1988,123:241-251. [22] 高宾华,保文成,陈超群,等. 延塑性航空合金磨削砂轮粘附及粘附抑制技术的研究现状与展望[J]. 航空制造技术,2021,64(7):53-71. GAO Binhua,BAO Wencheng,CHEN Chaoqun,et al. Research status and future development of wheel loading and suppressed in grinding of ductility aeronautical alloys[J]. Aeronautical Manufacturing Technology,2021,64(7):53-71. [23] 于晓,王优强,张平,等. 7N01 铝合金高速斜角切削过程中的切屑演化机理[J]. 表面技术,2022,51(3):167-177. YU Xiao,WANG Youqiang,ZHANG Ping,et al. Chip evolution mechanism in high speed oblique cutting of 7N01 aluminum alloy[J]. Surface Technology,2022,51(3):167-177. [24] ZHANG W X,WONG K,NORALES M,et al. Implications of using two low-power continuous-wave lasers for polishing[J]. International Journal of Extreme Manufacturing,2020,2:035101. [25] Astrid S,Andreas B,Johannes F. Ultrashort pulse laser polishing by continuous surface melting[J]. Journal of Materials Processing Technology,2021,293:117058. [26] PETER L,DANIEL M,STEFFEN W. Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide[J]. The International Journal of Advanced Manufacturing Technology,2020,109(3-4):1167-1175. [27] MENG B B,YUAN D D,ZHENG J,et al. Molecular dynamics study on femtosecond laser aided machining of monocrystalline silicon carbide[J]. Materials Science in Semiconductor Processing,2019,101:1-9. [28] 赵国龙,夏宏军,李亮,等. 激光诱导可控氧化辅助微细铣削TiAl金属间化合物的研究[J]. 机械工程学报,2021,57(9):254-263. ZHAO Guolong,XIA Hongjun,LI Liang,et al. Investigation on laser-induced controllable oxidation assisted micro milling of titanium aluminum intermetallic alloy[J]. Journal of Mechanical Engineering,2021,57(9):254-263. [29] WANG N N,ZHANG G P,REN L J,et al. Analysis of abrasive grain size effect of abrasive belt on material removal performance of GCr15 bearing steel[J]. Tribology International,2022,171:107536. |