机械工程学报 ›› 2023, Vol. 59 ›› Issue (9): 230-251.doi: 10.3901/JME.2023.09.230
兰红波1, 李红珂1, 钱垒2, 张广明1, 于志浩1, 孙鹏1, 许权1, 赵佳伟1, 王飞1, 朱晓阳1
收稿日期:
2022-05-08
修回日期:
2022-11-24
出版日期:
2023-05-05
发布日期:
2023-07-19
通讯作者:
朱晓阳(通信作者),男,1988年出生,博士,副教授,博士研究生导师。主要研究方向为微尺度3D打印工艺及装备研发、微光学器件的设计与制造、透明导电薄膜以及柔性电子3D打印。E-mail:zhuxiaoyang@qtech.edu.cn
E-mail:zhuxiaoyang@qtech.edu.cn
作者简介:
兰红波,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为微纳尺度3D打印、复合材料3D打印、多材料3D打印、大面积纳米压印光刻、微纳制造。E-mail:hblan@126.com李红珂,男,1992年出生,博士研究生。主要研究方向为3D打印与微纳制造。E-mail:lhk1164072308@163.com
基金资助:
LAN Hongbo1, LI Hongke1, QIAN Lei2, ZHANG Guangming1, YU Zhihao1, SUN Peng1, XU Quan1, ZHAO Jiawei1, WANG Fei1, ZHU Xiaoyang1
Received:
2022-05-08
Revised:
2022-11-24
Online:
2023-05-05
Published:
2023-07-19
摘要: 微纳3D打印是近年出现的一种颠覆性新技术,经过10多年的迅猛发展,国内外学者已经提出10多种微纳3D打印工艺,但现有微纳3D打印大都面临打印材料和基材的普适性和兼容性差、大面积宏/微跨尺度结构制造困难、生产成本高,尤其是还存在成形效率(尺寸)和打印精度相矛盾的挑战性难题。经过近10年的研究与技术攻关,提出并建立了一种电场驱动喷射沉积微纳3D打印新技术,围绕该技术在基础理论、数值模拟、关键技术和装备、打印材料、实验研究和工艺优化、工程应用等方面开展了较为系统和深入研究。主要综述了电场驱动喷射沉积微纳3D打印基本原理和近年取得重要进展,尤其是系统介绍了该技术在先进电路和电子制造中的典型应用,旨在为先进电路和电子的制造提供了一种低成本、普适性好的具有工业化应用前景的全新解决方案。
中图分类号:
兰红波, 李红珂, 钱垒, 张广明, 于志浩, 孙鹏, 许权, 赵佳伟, 王飞, 朱晓阳. 电场驱动喷射沉积微纳3D打印及其在先进电路和电子制造中的应用[J]. 机械工程学报, 2023, 59(9): 230-251.
LAN Hongbo, LI Hongke, QIAN Lei, ZHANG Guangming, YU Zhihao, SUN Peng, XU Quan, ZHAO Jiawei, WANG Fei, ZHU Xiaoyang. Electric-field-driven Jet Deposition Micro-nano 3D Printing and Its Applications in Manufacturing Advanced Circuits and Electronics[J]. Journal of Mechanical Engineering, 2023, 59(9): 230-251.
[1] SAHA S K,WANG D,NGUYEN V H,et al. Scalable submicrometer additive manufacturing[J]. Science,2019,336:105-109. [2] LEWIS J A,AHN B Y. Three-dimensional printed electronics[J]. Nature,2015,518:42-43. [3] LIASHENKO L,ROSELL-LLOMPART J,CABOT A. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection[J]. Nature Communications,2020,11:753. [4] HIRT L,REISER A,SPOLENAK R,et al. Additive manufacturing of metal structures at the micrometer scale[J]. Advanced Materials,2017,29(17):1604211. [5] REISER A,LINDÉN M,ROHNER P,et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale[J]. Nature Communications,2019,10:1853. [6] VYATSKIKH A,DELALANDE S,KUDO A,et al. Additive manufacturing of 3D nano-architected metals[J]. Nature Communications,2018,9:593. [7] LOTERIE D,DELROT P,MOSER C. High-resolution tomographic volumetric additive manufacturing[J]. Nature Communications,2020,11:852. [8] GISSIBL T,THIELE S,HERKOMMER A,et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics,2016,10:554-560. [9] LIU X,WEI M,WANG Q,et al. Capillary-force-driven self-assembly of 4D-printed microstructures[J]. Advanced Materials,2021,33(22):2100332. [10] SPIEGEL C A,HIPPLER M,MÜNCHINGER A,et al. 4D printing at the microscale[J]. Advanced Functional Materials,2020,26:1907615. [11] 兰红波,李涤尘,卢秉恒. 微纳尺度3D打印[J]. 中国科学:技术科学,2015,45(9):919-940. LAN Hongbo,LI Dichen,LU Bingheng. Micro-and nanoscale 3D printing[J]. Sci. Sin. Tech.,2015,45:919-940. [12] BEHROOZFAR A,DARYADEL S,MORSALI S,et al. Microscale 3D printing of nanotwinned copper[J]. Advanced Materials,2018,30:1705107. [13] GE Q,LI Z,WANG Z,et al. Projection micro stereolithography based 3D printing and its applications[J]. International Journal of Extreme Manufacturing,2020,2(2):022004. [14] BEHERA D,CHIZARI S,SHAW L A,et al. Current challenges and potential directions towards precision microscale additive manufacturing-Part IV:Future perspectives[J]. Precision Engineering,2021,68:197-205. [15] GAILEVIČIUS D,PADOLSKYTĖ V,MIKOLIŪNAITĖ L,et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution[J]. Nanoscale Horizons,2019,4:647-651. [16] LIN W,CHEN D,CHEN S. Emerging micro-additive manufacturing technologies enabled by novel optical methods[J]. Photonics Research,2020,8(12):1827-1842. [17] MAHMOOD M A,POPESCU A C. 3D printing at micro-level:laser-induced forward transfer and two-photon polymerization[J]. Polymers,2021,13:2034. [18] GREER A,BARBOUR E,CUTIONGCO M,et al. Large volume nanoscale 3D printing:Nano-3DP[J]. Applied Materials Today,2020,21:100782. [19] Optomec, Inc. The Technology behind aerosol jet[EB/OL]. (2022-01-07). https://optomec.com/printed-electronics/aerosol-jet-printers/. [20] 3D MicroPrint[EB/OL]. (2022-02-01) https://www.3dmicroprint.com/. [21] EFAB[EB/OL]. (2022-02-01). http://microfabrica.com/technology.html. [22] Photonic Professional GT2[EB/OL]. (2022-02-01). https://www.nanoscribe.com/en/products/photonic-professional-gt2. [23] HAN Y,DONG J. Electrohydrodynamic printing for advanced micro/nanomanufacturing:current progresses,opportunities,and challenges[J]. Journal of Micro-and Nano-Manufacturing,2018,6:040802. [24] REISER A,LINDÉN M,ROHNER P,et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale[J]. Nature Communications. 2019,10:1853. [25] TOOMBS J T,LUITZ M,COOK C C,et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography[J]. Science,2022,376(6590):308-312. [26] ROBINSON T M,HUTMACHER D W,DALTON P D. The next frontier in melt electrospinning:taming the jet[J]. Advanced Functional Materials,2019,2(44):1904664. [27] ONSES M S,SUTANTO E,FERREIRA P M,et al. Mechanisms,capabilities,and applications of high-Resolution electrohydrodynamic jet printing[J]. Small,2015,11(34):4237-4266. [28] HUANG Y A,BU N,DUAN Y,et al. Electrohydrodynamic direct-writing[J]. Nanoscale,2013,5(24):12007-12017. [29] ZHANG B,HE,J,LI X,et al. Micro/nanoscale electrohydrodynamic printing:from 2D to 3D[J]. Nanoscale,2016,8(34):15376-15388 [30] KADE J C,DALTON P D. Polymers for melt electrowriting[J]. Advanced Healthcare Materials,2021,10(1):2001232. [31] WUNNER F M,WILLE M,NOONAN T G,et al. Melt electrospinning writing of highly ordered large volume scaffold architectures[J]. Advanced Materials,2018,30(20):1706570. [32] 中国机械工程学会. 2018-2019 机械工程学科发展报告 机械制造[M]. 北京:中国科学技术出版社. 2020. Chinese Mechanical Engineering Society. 2018-2019 Peport on advances in mechanical engineering (Machine manufacturing)[M]. Beijing:Science and technology of china press. 2020. [33] PARK J U,HARDY M,KANG S J,et al. High-resolution electrohydrodynamic jet printing[J]. Nature Materials,2007,6:782-789. [34] 中国机械工程学会. 2018-2019 机械工程学科发展报告 增材制造[M]. 北京:中国科学技术出版社. 2021. Chinese Mechanical Engineering Society. 2018-2019 Peport on advances in mechanical engineering (Additive Manufacturing)[M]. Beijing:Science and technology of china press. 2021. [35] ZHU X,LIU M,QI X,et al. Templateless,plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing[J]. Advanced Materials,2021,33(21):2007772. [36] ZHU X,XU Q,LI H,et al. Fabrication of high-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D printing and UV-assisted microtransfer[J]. Advanced Materials,2019,31:1902479. [37] ZHANG Y,LI Z,LI H,et al. Fractal-based stretchable circuits via electric-field-driven microscale 3D printing for localized heating of shape memory polymers in 4D printing[J]. ACS Applied Materials & Interfaces,2021,13(35):41414-41423. [38] WANG Z,ZHANG G,HUANG H,et al. The self-induced electric-field-driven jet printing for fabricating ultrafine silver grid transparent electrode[J]. Virtual and Physical Prototyping,2021,16(1):113-123. [39] ZHANG G,LAN H,QIAN L,et al. A microscale 3D printing based on the electric-field-driven jet[J]. 3D Printing and Additive Manufacturing,2020,7(1):37-44. [40] LI H,ZHANG Y,TAI Y,et al. Flexible transparent electromagnetic interference shielding films with silver mesh fabricated using electric-field-driven microscale 3D printing[J]. Optics & Laser Technology,2022,148:107717. [41] YANG J,ZI D,ZHU X,et al. Printed flexible transparent electrodes for harsh environments[J]. Advanced Materials Technologies,2021,2101087. [42] LI H,ZHU X,LI Z,et al. Preparation of nano silver paste and applications in transparent electrodes via electric-field driven micro-scale 3D printing[J]. Nanomaterials,2021,10(1):107. [43] LI X,ZHANG G,LI W,et al. The electric-field-driven fusion jetting 3D printing for fabricating high resolution polylactic Acid/multi-walled carbon nanotube composite micro-scale structures[J]. Micromachines,2020,11(12):1132. [44] ZHU X,LI Z,HU Y,et al. Facile fabrication of defogging microlens arrays using electric field-driven jet printing[J]. Optics & Laser Technology,2020,123:105943. [45] PENG Z,GOU N,WEI Z,et al. Fabrication of a large-area,fused polymer micromold based on electric-field-driven (EFD) µ-3D Printing[J]. Polymers,2019,11(11):1902. [46] ZHU X,XU Q,LI H,et al. Fabricating transparent electrodes by combined electric-field-driven fusion direct printing and the liquid bridge transfer method[J]. Journal of Physics D:Applied Physics,2019,52(24):245103. [47] QIAN L,LAN H,ZHANG G. A theoretical model for predicting the feature size printed by electrohydrodynamic jet printing[J]. Applied Physics Letters,2018,112,203505. [48] 曹辉,张广明,杨建军,等. 基于单平板电极电场驱动喷射沉积微纳3D打印[J]. 科学通报,2021,66(21):2745-2757. CAO Hui,ZHANG Guangming,YANG Jianjun,et al. Electric-field-driven jet deposition micro-nano 3D printing based on a single-plate electrode[J]. Chinese Science Bulletin,2021,66:2745-2757 [49] 钱垒,兰红波,赵佳伟,等. 电场驱动喷射沉积3D打印[J]. 中国科学:技术科学,2018,48(7):773-782. QIAN Lei,LAN Hongbo,ZHAO Jiawei,et al. Electric-field-driven jet deposition 3D printing[J]. Sci Sin Tech,2018,48:773-782. [50] 刘明杨,齐习猛,朱晓阳,等. 基于电场驱动喷射微3D打印和辊轮辅助热压印制造嵌入式金属网格柔性透明导电薄膜[J]. 科学通报,2020,65(12):1151-1162. LIU Mingyang,QI Ximeng,ZHU Xiaoyang,et al. Fabrication of embedded metal-mesh flexible transparent conductive film via electric-field-driven jet microscale 3D printing and roller-assisted thermal imprinting[J]. Chinese Science Bulletin,2020,65:1151-1162 [51] 周贺飞,兰红波,李红珂,等. 基于电场驱动喷射沉积微尺度3D打印制造金属网栅透明电磁屏蔽玻璃的研究[J]. 机械工程学报,2019,55(15):56-63. ZHOU Hefei,LAN Hongbo,LI Hongke,et al. Metal-mesh transparent emi shielding glass fabricated by electric field driven jet deposition micro-scale 3D printing[J]. Journal of Mechanical Engineering,2019,55(15):56-63. [52] 李红珂,胡玉杰,朱晓阳,等. 基于电场驱动喷射微 3D打印的大面积微透镜阵列制造研究[J]. 机械工程学报,2021,57(23):195-208. LI Hongke,HU Yujie,ZHU Xiaoyang,et al. Fabrication of larger-area microlenses arrays based on electric field driven Jet micro-scale 3D printing technology[J]. Journal of Mechanical Engineering,2021,57(23):195-208. [53] 杨昆,张广明,李晓强,等. 基于电场驱动熔融喷射聚合物基复合材料高分辨率3D打印[J]. 机械工程学报,2020,56(23):193-202. YANG Kun,ZHANG Guangming,LI Xiaoqiang,et al. High-resolution 3D printing of polymer matrix composites based on electric field driven fusion jetting[J]. Journal of Mechanical Engineering,2020,56(23):193-202. [54] 张勇霞,张广明,周龙健,等. 基于电场驱动喷射微3D打印的高性能纸基电路制造工艺研究[J]. 中国机械工程,2022,1-11. ZHANG Yongxia,ZHANG Guangming,ZHOU Longjian,et al. High-performance paper-based electronic Fabricated by electric field driven jet micro 3D printing[J]. China Mechanical Engineering,2022,1-11. [55] 赵佳伟,兰红波,杨昆,等. 电场驱动熔融喷射沉积高分辨率3D打印[J]. 工程科学学报,2019,41(5):652-661. ZHAO Jiawei,LAN Hongbo,YANG Kun,et al,High-resolution fused deposition 3D printing based on electric-field-driven jet[J]. Chinese Journal of Engineering,2019,41(5):652-661. [56] 兰红波,赵佳伟,钱垒,等. 电场驱动喷射沉积微纳3D打印技术及应用[J]. 航空制造技术,2019,62:38-45. LAN Hongbo,ZHAO Jiawei,QIAN Lei,et al. Electric field driven jet deposition based micro and nano scale 3D printing technique and its application[J]. Aeronautical Manufacturing Technology,2019,62:38-45. [57] 杨昆,杨建军,赵佳伟,等. 基于电场驱动熔融喷射3D打印大面积聚甲基丙烯酸甲酯微结构制造方法[J]. 高分子材料科学与工程,2019,35(10):115-123. YANG Kun,YANG Jianjun,ZHAO Jiawei,et al. Large-area polymethyl methacrylate microstructures fabricated by electric field driven fused jet deposition 3D printing[J]. Polymer Materials Science & Engineering,2019,35(10):115-123. [58] 徐宁. 微纳尺度3D打印专利技术分析[J]. 专利代理,2020(3):80-85. XU Ning. Analysis of micro and nano scale 3D printing patent technology[J]. Patent Agency,2020(3):80-85. [59] AN H S,PARK Y,KIM K,et al. High-resolution 3D printing of freeform,transparent displays in ambient air[J]. Advanced Science,2019,6(23):1901603. [60] MASHAYEKHI M,WINCHESTER L,EVANS L,et al. Evaluation of aerosol,superfine inkjet,and photolithography printing techniques for metallization of application specific printed electronic circuits[J]. IEEE Transactions on Electron Devices,2016,63(3):1246-1253. [61] GOH G L,ZHANG H,CHONG T H,et al. 3D printing of multilayered and multimaterial electronics:A review[J]. Advanced Electronic Materials,2021,7(10):2100445. [62] BELL N S,PYLIN S,COOK A,et al. Additive manufacturing of hybrid circuits[J]. Annual Review of Materials Research. 2016,46(1):40-62. [63] HENSLEIGH R,CUI H,XU Z,et al. Charge-programmed three-dimensional printing for multi-material electronic devices[J]. Nature Electronics,2020,3:216-224. [64] MADOU M J. Fundamentals of microfabrication:the science of miniaturization[M]. Boca Raton:CRC Press,2018. [65] LEE S,WAJAHAT M,KIM J H,et al. Electroless deposition-assisted 3D printing of micro circuitries for structural electronics[J]. ACS Applied Materials & Interfaces,2019,11(7):7123-713. [66] SIM K,CHEN S,LI Z,et al. Three-dimensional curvy electronics created using conformal additive stamp printing[J]. Nature Electronics,2019,2:471-479. [67] CARRANZA G T,ROBLES U,VALLE C L,et al. Design and hybrid additive manufacturing of 3-D/volumetric electrical circuits[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology,2019,9(6):1176-1183. [68] FERNANDES D F,MAJIDI C,TAVAKOLI M. Digitally printed stretchable electronics:A review[J]. Journal of Materials Chemistry C,2019,7:14035-14068. [69] VALENTINE A D,BUSBEE T A,BOLEY J W,et al. Hybrid 3D printing of soft electronics[J]. Advanced Materials,2017,29(40):1703817. [70] HUANG Q,ZHU Y. Printing conductive nanomaterials for flexible and stretchable electronics:A review of materials,processes,and applications[J]. Advanced Materials Technologies,2019,4(5):1800546. [71] SOWADE E,POLOMOSHNOV M,WILLERT A,et al. Toward 3D-printed electronics:Inkjet-printed vertical metal wire interconnects and screen-printed batteries[J]. Advanced Engineering Materials,2019,21(10):1900568. [72] LU B,LAN H,LIU H. Additive manufacturing frontier:3D printing electronics[J]. Opto-Electronic Advances,2018,1(1):170004. [73] BONNASSIEUX Y,BRABEC C J,CAO Y,et al. The 2021 flexible and printed electronics roadmap[J]. Flexible and Printed Electronics,2021,6(2):023001. [74] LEE H B,JIN W Y,OVHAL M M,et al. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications:a review[J]. Journal of Materials Chemistry C,2019,7:1087-1110. [75] JIANG J,BAO B,LI M,et al. Fabrication of transparent multilayer circuits by inkjet printing[J]. Advanced Materials,2016,28(17):1420-1426. [76] LI D,LAI W,ZHANG Y,et al. Printable transparent conductive films for flexible electronics[J]. Advanced Materials,2018,30(10):1704738. [77] CHEN Z,FANG R,LI W,et al. Stretchable transparent conductors:From micro/macromechanics to applications[J]. Advanced Materials,2019,31(35):1900756. [78] SUN Y,CHANG M,MENG L,et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes[J]. Nature Electronics,2019,2:513-520. [79] LI Y,MENG L,YANG Y M,et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nature communications,2016,7(1):1-10. [80] TANG G,TANG B. Fabrication and performance of an ultrafine silver grid film applied to flexible touch sensor[J]. SN Applied Sciences,2020,2(1):1-9. [81] SHEN S,CHEN S Y,ZHANG D Y,et al. High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices[J]. Optics Express,2018,26(21):27545-27554. [82] CHEN X,GUO W,XIE L,et al. Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications[J]. ACS Applied Materials & Interfaces,2017,9(42):37048-37054. [83] CHEN X,NIE S,GUO W,et al. Printable high-aspect ratio and high-resolution cu grid flexible transparent conductive film with figure of merit over 80 000[J]. Advanced Electronic Materials,2019,5(5):1800991. [84] KIM H J,LEE S H,LEE J,et al. High-durable agni nanomesh film for a transparent conducting electrode[J]. Small,2014,10(18):3767-3774. [85] HAN S,CHAE Y,KIM J Y,et al. High-performance solution-processable flexible and transparent conducting electrodes with embedded Cu mesh[J]. Journal of Materials Chemistry C,2018,6(16):4389-4395. [86] SKARDAL A,MURPHY S V,DEVARASETTY M,et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform[J]. Scientific Reports,2017,7(1):1-16. [87] PAPANASTASIOU D T,SCHULTHEISS A,MUNOZ-ROJAS D,et al. Transparent heaters:a review[J]. Advanced Functional Materials,2020,30(21):1910225. [88] HAN M,KIM B,LIM H,et al. Transparent photothermal heaters from a soluble NIR-absorbing diimmonium salt[J]. Advanced Materials,2020,32(1):1905096. [89] ZHOU H,ZHU X,LI H,et al. Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing[J]. Advanced Optical Technologies,2019,8(3-4):217-223. [90] CHOI H S,SUH S J,KIM S W,et al. Transparent electromagnetic shielding film utilizing imprinting-based micro patterning technology[J]. Polymers,2021,13(5):738. [91] CHEN Y,LI J,LI T,et al. Recent advances in graphene-based films for electromagnetic interference shielding:Review and future prospects[J]. Carbon,2021,180:163-184. [92] ZHAO Y,HAO L,ZHANG X,et al. A novel strategy in electromagnetic wave absorbing and shielding materials design:Multi-responsive field effect[J]. Small Science,2022,2(2):2100077. [93] ZHAO B,HAMIDINEJAD M,WANG S,et al. Advances in electromagnetic shielding properties of composite foams[J]. Journal of Materials Chemistry A,2021,9(14):8896-8949. [94] HAN Y,LIU Y,HAN L,et al. High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding[J]. Carbon,2017,115:34-42. [95] JIANG Z P,HUANG W B,CHEN L S,et al. Ultrathin,lightweight,and freestanding metallic mesh for transparent electromagnetic interference shielding[J]. Optics Express,2019,27(17):24194-24206. [96] LU Z G,MA L M,TAN J B,et al. Graphene,microscale metallic mesh,and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing[J]. 2D Materials,2017,4(2):025021. [97] ZHANG N,WANG Z,SONG R,et al. Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness[J]. Science Bulletin,2019,64(8):540-546. [98] JIANG C M,TAN D C,LI Q K,et al. High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2021,13(13):15525-15535. [99] WANG J L,HASSAN M,LIU J W,et al. Nanowire assemblies for flexible electronic devices:Recent advances and perspectives[J]. Advanced Materials,2018,30(48):1803430. [100] DATTA R S,SYED N,ZAVABETI A,et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique[J]. Nature Electronics,2020,3(1):51-58. [101] IM H G,AN B W,JIN J,et al. A high-performance,flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels[J]. Nanoscale,2016,8(7):3916-3922. [102] LI D,LAI W Y,ZHANG Y Z,et al. Printable transparent conductive films for flexible electronics[J]. Advanced Materials,2018,30(10):1704738. [103] KHAN U,KIM T H,RYU H,et al. Graphene tribotronics for electronic skin and touch screen applications[J]. Advanced Materials,2017,29(1):1603544. [104] WANG J,LIANG M,FANG Y,et al. Rod-coating:towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens[J]. Advanced Materials,2012,24(21):2874-2878. [105] NAIR N M,KHANRA I,RAY D,et al. Silver nanowire-based printable electrothermochromic ink for flexible touch-display applications[J]. ACS Applied Materials & Interfaces,2021,13(29):34550-34560. [106] KIM W,OH H,KWAK Y,et al. Development of a carbon nanotube-based touchscreen capable of multi-touch and multi-force sensing[J]. Sensors,2015,15(11):28732-28741. [107] CHOI Y M,KIM K Y,LEE E,et al. Fabrication of a single-layer metal-mesh touchscreen sensor using reverse-offset printing[J]. Journal of Information Display,2015,16(1):37-41. [108] KIM S,PHUNG T H,KIM S,et al. Low-cost fabrication method for thin,flexible,and transparent touch screen sensors[J]. Advanced Materials Technologies,2020,5(9):2000441. [109] KHAN A,LEE S,JANG T,et al. High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process[J]. Small,2016,12(22):3021-3030. [110] SUH Y D,HONG S,LEE J,et al. Random nanocrack,assisted metal nanowire-bundled network fabrication for a highly flexible and transparent conductor[J]. RSC advances,2016,6(62):57434-57440. [111] WALIA S,MONDAL I,KULKARNI G U. Patterned Cu-Mesh-based transparent and wearable touch panel for tactile,proximity,pressure,and temperature sensing[J]. ACS Applied Electronic Materials,2019,1(8):1597-1604. [112] MONDAL I,GANESHA M K,SINGH A K,et al. Inkjet printing aided patterning of transparent metal mesh for wearable tactile and proximity sensors[J]. Materials Letters,2022,312:131724. [113] SUH Y D,KWON J,LEE J,et al. Maskless fabrication of highly robust,flexible transparent Cu conductor by random crack network assisted Cu nanoparticle patterning and laser sintering[J]. Advanced Electronic Materials,2016,2(12):1600277. [114] SHIN D K,PARK J. Design of moiré-free metal meshes using ray tracing for touch screen panels[J]. Displays,2015,38:9-19. [115] KIM D J,SHIN H I,KO E H,et al. Roll-to-roll slot-die coating of 400 mm wide,flexible,transparent Ag nanowire films for flexible touch screen panels[J]. Scientific Reports,2016,6(1):1-12. [116] ZANG Y,ZHANG F,DI C,et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Mater Horiz,2015,2(2):140-156. [117] HE F,YOU X,WANG W,et al. Recent progress in flexible microstructural pressure sensors toward human-machine interaction and healthcare applications[J]. Small Methods,2021,5(3):2001041. [118] KUMAR A. Flexible and wearable capacitive pressure sensor for blood pressure monitoring[J]. Sensing and Bio-Sensing Research,2021,33:100434. [119] MENG K,XIAO X,WEI W,et al. Wearable pressure sensors for pulse wave monitoring[J]. Advanced Materials,2022:2109357. [120] AMIT M,CHUKOSKIE L,SKALSKY A J,et al. Flexible pressure sensors for objective assessment of motor disorders[J]. Advanced Functional Materials,2020,30(20):1905241. [121] KAHN N,LAVIE O,PAZ M,et al. Dynamic nanoparticle-based flexible sensors:diagnosis of ovarian carcinoma from exhaled breath[J]. Nano Letters,2015,15(10):7023-7028. [122] HO M D,LING Y,YAP L W,et al. Percolating network of ultrathin gold nanowires and silver nanowires toward "invisible" wearable sensors for detecting emotional expression and apexcardiogram[J]. Advanced Functional Materials,2017,27(25):1700845. [123] LEE J,LIM M,YOON J,et al. Transparent,flexible strain sensor based on a solution-processed carbon nanotube network[J]. ACS Applied Materials & Interfaces,2017,9(31):26279-26285. [124] MA L,YANG W,WANG Y,et al. Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks[J]. Composites Science and Technology,2018,165:190-197. [125] YANG Y F,TAO L Q,PANG Y,et al. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales[J]. Nanoscale,2018,10(24):11524-11530. [126] XU F,LI X,SHI Y,et al. Recent developments for flexible pressure sensors:A review[J]. Micromachines,2018,9(11):580. [127] LIU H,ZHANG H,HAN W,et al. 3D printed flexible strain sensors:From printing to devices and signals[J]. Advanced Materials,2021,33(8):2004782. [128] XIA K,WU W,ZHU M,et al. CVD growth of perovskite/graphene films for high-performance flexible image sensor[J]. Science Bulletin,2020,65(5):343-349. [129] WANG X,ZHANG M,ZHANG L,et al. Inkjet-printed flexible sensors:From function materials,manufacture process,and applications perspective[J]. Mater. Today Commun.,2022,103263. [130] QIN H,CAI Y,DONG J,et al. Direct printing of capacitive touch sensors on flexible substrates by additive E-jet printing with silver nanoinks[J]. Journal of Manufacturing Science and Engineering,2017,139(3):031011. [131] WANG R,ZHU X,SUN L,et al. Cost-effective fabrication of transparent strain sensors via micro-scale 3d printing and imprinting[J]. Nanomaterials,2021,12(1):120. [132] SUN K,WEI T S,AHN B Y,et al. 3D Printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials,2013,25(33):4539-4543. [133] JANG Y,TAMBUNAN I H,TAK H,et al. Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing[J]. Applied Physics Letters,2013,102(12):123901. [134] KANG J,PARK C,LEE S,et al. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles[J]. Nanoscale,2016,8,11217-11223. [135] SCHNEIDER J,ROHNER P,THUREJA D,et al. Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes[J]. Advanced Functional Materials,2016,26(6):833-840. [136] 齐习猛. 基于电场驱动微3D打印的嵌入式银网格柔性透明电极制造[D]. 青岛:青岛理工大学,2021. QI Ximeng. Manufacturing of embedded silver grid flexible transparent electrode based on electric-field-driven microscale 3D printing[D]. Qingdao:Qingdao University of Technology,2021. [137] KIRTANIA S G,RIHEEN M A,KIM S U,et al. Inkjet printing on a new flexible ceramic substrate for Internet of Things (IoT) applications[J]. Micromachines,2020,11(9):841. [138] REIMANN T. BARTH S,CAPRARO B,et al. Cofiring of LTCC multilayer assemblies with integrated NTC thermistor temperature sensor layers[J]. Ceramics International,2021,47(19):27849-27853. [139] 陈靖,丁蕾,陈瑫,等. 基于LTCC基板BCB/Cu薄膜混合多层互连技术研究[J]. 固体电子学研究与进展,2019,39(3):226-234. CHEN Jing,DING Lei,CHEN Tao,et al. Research on bcb/cu thin film multilayer interconnection technology bcb/cu based on ltcc substrate[J]. Research & Progress of SSE,2019,39(3):226-234. [140] 陈宁,肖刚,袁海,等. LTCC丝网印刷细微线条技术研究[J]. 电子工艺技术,2019,40(2):89-93. CHEN Ning,XIAO Gang,YUAN Hai,et al. Study on fine line technology of ltcc screen printing[J]. Electronics Process Technology,2019,40(2):89-93. |
[1] | 戴一帆;彭小强. 光刻物镜光学零件制造关键技术概述[J]. , 2013, 49(17): 10-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||