[1] KATIYAR P K. A comprehensive review on synergy effect between corrosion and wear of cemented tungsten carbide tool bits:A mechanistic approach[J]. International Journal of Refractory Metals&Hard Materials,2020,92:105315. [2] 伍俏平,欧阳志勇,阳慧,等.超细晶硬质合金加工机理及加工性能[J].宇航材料工艺,2019,49(6):1-6.WU Qiaoping,OUYANG Zhiyong,YANG Hui,et al.Machining mechanism and machining properties of ultrafine cemented carbide[J]. Aerospace Materials&Technology,2019,49(6):1-6. [3] KE Z,ZHENG Y,ZHANG G T,et al. Fabrication of dual-grain structure WC-Co cemented carbide by in-situ carbothermal reduction of WO3 and subsequent liquid sintering[J]. Ceramics International, 2020, 46:12767-12772. [4] 秦琴.超细WC-Co硬质合金成型工艺发展现状[J].黑龙江科技信息,2014(33):55.QIN Qin. Development of ultra-fine WC-Co cemented carbide molding process[J]. Heilongjiang Science and Technology Information,2014(33):55. [5] 胡耀斌,庞前列,彭毅萍.我国硬质合金产业的发展现状及展望[J].超硬材料工程,2017,29(4):55-58.HU Yaowu,PANG Qianlie,PENG Yiping. Development status and prospect of cemented carbide industry in China[J]. Superhard Materials Engineering,2017,29(4):55-58. [6] ROCHA A M F,BASTOS A C,CARDOSO J P,et al.Corrosion behaviour of WC hardmetals with nickel-based binders[J]. Corrosion Science,2018,147:384-393. [7] WANG K F,CHOU K C,ZHANG G H. Preparation of high-purity and ultrafine WC-Co composite powder by a simple two-step process[J]. Advanced Powder Technology,2020,31(5):1940-1945. [8] 杨树忠,王玉香,肖颖奕,等.超细晶WC-Co硬质合金制备工艺研究[J].世界有色金属,2019(22):142-144.YANG Shuzhong,WANG Yuxiang,XIAO Yinyi,et al.Study on the preparation process of ultrafine WC-Co cemented carbide[J]. World Nonferrous Metals,2019(22):142-144. [9] JOSÉGARCÍA T,VERÓNICA C C,ANDREAS B,et al.Cemented carbide microstructures:A review[J].International Journal of Refractory Metals&Hard Materials,2019,80(8):40-68. [10] SHI X L,SHAO G Q,DUAN X L,et al. Powder extrusion molding of nanocrystalline WC-10Co composite cemented carbide[J]. Journal of Wuhan University of Technology,2006,21(1):46-48. [11] 王伟,栾道成,陈庚.超细硬质合金研究进展综述[J].西华大学学报(自然科学版),2009,28(4):100-104.WANG Wei,LUAN Daocheng,CHEN Geng. Review of research progress of ultrafine cemented carbide[J]. Journal of Xihua University(Natural Science Edition),2009,28(4):100-104. [12] 张卫丰.超细硬质合金棒材的制备研究[D].武汉:武汉理工大学,2004.ZHANG Weifeng. Study on preparation of superfine cemented carbide bars[D]. Wuhan:Wuhan University of Technology,2004. [13] ZHOU J C,HUANG B Y,WU E X. Extrusion moulding of hard-metal powder using a novel binder system[J].Journal of Materials Processing Technology,2003,137:21-24. [14] 韩胜强,范鹏元,南博,等.先进陶瓷成形技术现状及发展趋势[J].精密成形工程,2020,12(5):66-80.HAN Shengqiang,FAN Pengyuan,NAN Bo,et al. Status and development trend of advanced ceramic forming technology[J]. Precision Forming Engineering,2020,12(5):66-80. [15] DEHGHAN M A,BERMINGHAM M,DARGUSCH M,et al. Metal injection moulding of titanium and titanium alloys:challenges and recent development[J]. Powder Technology,2017,319:289-301. [16] KOCAK H,SUBASI M,KARATAS C. Sinter bonding of AISI 4340 and WC-Co using Ni interlayer by inserted powder injection molding[J]. Ceramics International,2019,45(17):22331-22335. [17] GUTIERREZ J A E,FREDEL M C,WENDHAUSEN P A P, et al. Preparation of hard metal(WC-10Co)components by powder injection molding[J]. International Latin-American Conference on Powder Technology,2001,189-191:579-585. [18] FAYYAZ A, MUHAMAD N, SULONG A B.Investigation On feedstock preparation for micro-cemented carbide injection molding[J]. Powder Metallurgy Progress,2018,18(2):96-102. [19] PAHRORAJI H F,IBRAHIM M H I,MUNIANDY P,et al. Parameter optimization of WC-TaC-6Co green part in injection moulding using taguchi method[J]. Materials Science and Engineering,2020,834:012077. [20] OJO K J,TAHIR S M,DELE A T T,et al. Controlling the sintering response in the development of multilayered components produced via powder injection molding route—A review[J]. The International Journal of Advanced Manufacturing Technology,2020,107:3755-3777. [21] 朱则刚.浅谈金属粉末注射成形技术[J].铝加工,2014(1):36-39.ZHU Zegang. Discussion on metal powder injection molding technology[J]. Aluminum Fabrication,2014(1):36-39. [22] PRATHABRAO M,SRI YULIS M A,IBRAHIM M H I.Review on sintering process of WC-Co cemented carbide in metal injection molding technology[J]. International Conference on Applied Science,2017,165:012017. [23] AMIN S Y M,MUHAMAD N,JAMALUDIN K R.Optimization of injection molding parameters for WC Co feedstocks[J]. Jurnal Teknolgi,2013,63(1):51-54. [24] ABOLDASANI H,MUHAMSD N. A new starch-based binder for metal injection molding[J]. Journal of Materials Processing Technology,2010,210(6-7):961-968. [25] RHEE B O,JUNG Y C,LEE J H. The rheological characterization of PIM feedstocks at low shear rates[J].Powder Injection Molding Technologies,1998,23:79-91. [26] YULIS M S,MUHAMAD N A,JAMALUDIN K R,et al. Characterization of the Feedstock Properties of Metal Injection-molded WC-Co with Palm Stearin Binder System[J]. Sains Malaysiana,2014,43(1):123-128. [27] HENG S Y, RAZA M R, MUHAMAD N, et al.Micro-powder injection molding(μPIM)of tungsten carbide[J]. International Journal of Refractory Metals&Hard Materials,2014,45:189-195. [28] ZAUNER R. Micro powder injection moulding[J].Microelectronic Engineering,2006,83:1442-1444. [29] TAY B,LIU L,LOH N,et al. Characterization of metallic micro rod arrays fabricated byμMIM[J]. Materials Characterization,2006,57:80-85. [30] FAYYAZ A,MUHAMAD N,SULONG A B,et al.Micro-powder injection molding of cemented tungsten carbide:Feedstock preparation and properties[J].Ceramics International,2015,41:3605-3612. [31] 边季峰,周林.金属及陶瓷粉末注射成形工艺原理及应用[J].新型工业化,2017,7(10):39-42.BIAN Jifeng,ZHOU Lin. Theory and application of metal and ceramic powder injection molding process[J]. New Industrialization,2017,7(10):39-42. [32] SHAHBUDIN S N A,OTHMAN M H,AMIN S Y M,et al. A review of metal injection molding-process,optimization,defects and microwave sintering on WC-Co cemented carbide[J]. Materials Science and Engineering,2017,226:012162. [33] 赵丽丽,张严,冯文,等.硬质合金模压成型收缩系数对压制性能与物理性能的影响[J].工具技术,2019,53(9):62-66.ZHAO Lili,ZHANG Yan,FENG Wen,et al. Effect of shrinkage coefficients on pressing properties and physical properties of cemented carbide molding[J]. Tool Engineering,2019,53(9):62-66. [34] 何莹,雷普军,张京,等.粉末冶金模压制成型中硬质合金模体非断裂失效研究[J].模具工业,2019,45(11):72-74.HE Yin,LEI Pujun,ZHANG Jing,et al. Study on non-fracture failure of cemented carbide die in powder metallurgy molding[J]. Die&Mould Industry,2019,45(11):72-74. [35] 孟松鹤,李金平,韩杰才.粉末的爆炸压实工艺[J].材料科学与工艺,2006(4):404-407.MENG Songhe, LI Jinping, HAN Jiecai. Explosive compaction of powder[J]. Materials Science and Technology,2006(4):404-407. [36] 李剑斌,陶聪,陆明,等.爆炸压实制备Fe基非晶合金棒的研究[J].热加工工艺,2019,48(22):76-78,85.LI Jian-bin,TAO Cong,LU Ming,et al. Study on preparation of Fe-based amorphous alloy rod by explosive compaction[J]. Hot Working Technology,2019,48(22):76-78,85. [37] BUZYURKIN A E,KRAUS E I,LUKYANOV Y L.Explosive compaction of WC+Co mixture by axisymmetric scheme[J]. Journal of Physics:Conference Series,2015,653:012036. [38] 薛志岗.等静压成形工艺的优化研究[J].佛山陶瓷,2013,23(5):22-24.XUE Zhigang. Research on optimization of isostatic pressing process[J]. Foshan Ceramics,2013,23(5):22-24. [39] 姜卓钰,张朋,包建文,等.等静压技术在材料加工领域的应用现状[J].宇航材料工艺,2017,47(1):13-19.JIANG Zhuoyu,ZHANG Peng,BAO Jianwen,et al.Application status of isostatic pressing technology in material processing field[J]. Aerospace Material Technology,2017,47(1):13-19. [40] 施辉献,谢刚,和晓才,等.热等静压技术的若干应用及发展趋势[J].云南冶金,2013,42(5):52-58.SHI Huixian,XIE Gang,HE Xiaocai,et al. Several applications and development trends of hot isostatic pressing technology[J]. Yunnan Metallurgy,2013,42(5):52-58. [41] MI S,COURTNEY T H. Synthesis of WC and WC-Co cements by mechanical alloying and subsequent hot isostatic pressing[J]. Scripta Materialia,1998,38(1):171-176. [42] 宋富阳,张剑,郭会明,等.热等静压技术在镍基铸造高温合金领域的应用研究[J].材料工程,2021,49(1):65-74.SONG Fuyang,ZHANG Jian,GUO Huiming,et al.Application of hot isostatic pressing technology in nickel base casting superalloy[J]. Journal of Materials Engineering,2021,49(1):65-74. [43] 李欣,龚燚,刘时兵,等.钛合金粉末热等静压技术的发展现状及展望[J].铸造,2020,69(4):335-341.LI Xin,GONG Yan,LIU Shibing,et al. Development status and prospect of hot isostatic pressing technology for titanium alloy powder[J]. Foundry,2020,69(4):335-341. [44] 刘文彬,陈飞雄,裴新军,等.大尺寸亚微米硬质合金顶锤的热等静压研制[J].稀有金属与硬质合,2020,48(2):82-89.LIU Wenbin, CHEN Feixiong, PEI Xinjun, et al.Development of large size submicron cemented carbide ahead hammer by hot isostatic presses[J]. Rare Metals&Cemented Carbides,2020,48(2):82-89. [45] 张晨. WC-Co硬质合金搅拌摩擦焊搅拌头的研制[D].南昌:南昌航空大学,2014.ZHANG Chen. Development of WC-Co carbide friction stir welding stir head[D]. Nanchang:Nanchang Hangkong University,2014. [46] 邓娟利,范尚武,成来飞,等.冷等静压成型压制工艺对坯体性能的影响[J].陶瓷学报,2012,33(2):138-143.DENG Juanli,FAN Shangwu,CHENG Laifei,et al.Effect of cold isostatic pressing process on properties of billet[J]. Journal of Ceramics,2012,33(2):138-143. [47] ZHANG C,LIANG B L,AI Y L,et al. Effect of cold isostatic pressing on the mechanical properties of WC-8Co cemented carbide for friction stir welding tool[J].Applied Mechanics and Materials,2014,563:107-111. [48] 肖科,吴翔,廖军.用冷等静压检测WC-Co合金收缩系数的探究[J].四川冶金,2015,37(4):67-70.XIAO Ke,WU Xiang,LIAO Jun. Study on the shrinkage coefficient of WC-Co alloy by cold isostatic pressure[J].Sichuan Metallurgy,2015,37(4):67-70. [49] MOSTAFAEI A,STEVENS E L,HUGHES E T,et al.Powder bed binder jet printed alloy 625:Densification,microstructure and mechanical properties[J]. Materials and Design,2016,108:126-135. [50] 张欣悦. 3D冷打印成形硬质合金的研究[D].北京:北京科技大学,2019.ZHANG Xinyue. Research on 3D Cold printing formed cemented carbide[D]. Beijing:University of Science and Technology Beijing,2019. [51] HERZOG D,SEYDA V,WYCISK E et al. Additive manufacturing of metals[J]. Acta Mater.,2016,117:371-392. [52] GU D D,MEINERS W,WISSENBACH K,et al. Laser additive manufacturing of metallic components:Materials, processes and mechanisms[J]. International Materials Reviews,2013,57:133-164. [53] DEBROY T,WEI H L,ZUBACK J S,et al. Additive manufacturing of metallic components–process,structure and properties[J]. Progress Materials Science,2018,92:112-224. [54] JIN W,ZHANG C,JIN S,et al. Wire arc additive manufacturing of stainless steels:A review[J]. Applied Sciences,2020,10(5):1563. [55] CHAUVET E,KONTIS P,ERIC A J,et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting[J]. Acta Materialia,2018,142:82-94 [56] VAITHILINGAM J,GOODRIDGE R D,HAGUE R J M,et al. The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting[J]. Journal of Materials Processing Technology,2016,232:1-8. [57] SIDAMBE A T,JUDSON D S,COLOSIMO S J,et al.Laser powder bed fusion of a pure tungsten ultra-fine single pinhole collimator for use in gamma ray detector characterization[J]. International Journal of Refractory Metals&Hard Materials,2019,84:104998. [58] CHOU R,MILLIGAN J,PALIWAL M,et al. Additive manufacturing of Al-12Si alloy via pulsed selective laser melting[J]. Journal of Metals,2015,67:590-596. [59] ZIAEE M,CRANEB N B. Binder jetting:A review of process, materials, and methods[J]. Additive Manufacturing,2019,28:781-801. [60] ARAMIAN A,RAZAVI S M J,SADEGHIAN Z,et al.A review of additive manufacturing of cermets[J].Additive Manufacturing,2020,33:101130. [61] BRICIN D,ŠPIRIT Z,KRIZ A. Metallographic analysis of the suitability of a WC-Co powder blend for selective laser melting technology[J].Materials Science Forum,2018,919:3-9. [62] LIU J Y,CHEN J,ZHOU L,et al. Role of Co content on densification and microstructure of WC–Co cemented carbides prepared by selective laser melting[J]. Acta Metallurgica Sinica(English Letters),2021,2:1-10. [63] 倪培燊,陈少华,卢洋,等. SLM打印制备WC-16%Co硬质合金工艺与样品特性研究[J].硬质合金,2019,36(3):177-183.NI Peishen,CHEN Shaohua,LU Yang,et al. Study on preparation of WC-16%Co cemented carbide by SLM printing and sample characteristics[J]. Cemented Carbide,2019,36(3):177-183. [64] CHEN J,HUANG M J,FANG Z G,et al. Microstructure analysis of high density WC-Co composite prepared by one step selective laser melting[J]. International Journal of Refractory Metals and Hard Materials,2019,84:104980. [65] ASTM. ASTMF 2792-12a. Standard terminology for additive manufacturing technologies[S]. ASTM F2792-10el 2013:2-4.10. 1520/F2792-12A.2. [66] MOSTAFAEI A,STEVENS E L,FERENCE J J,et al.Binder jetting of a complex-shaped metal partial denture framework[J]. Additive Manufacturing,2018,21:63-68. [67] ENNETI R K,PROUGH K C,WOLFE T A,et al.Sintering of WC-12%Co processed by binder jet 3D printing(BJ3DP)technology[J]. International Journal of Refractory Metals&Hard Materials,2018,71:28-35. [68] ENNETI R K,PROUGH K C. Wear properties of sintered WC-12%Co processed via binder jet 3D printing(BJ3DP)[J]. International Journal of Refractory Metals&Hard Materials,2019,78:228-232. [69] ENNETI R K,PROUGH K C. Effect of binder saturation and powder layer thickness on the green strength of the binder jet 3D printing(BJ3DP)WC-12%Co powders[J].International Journal of Refractory Metals&Hard Materials,2019,84:104991. [70] CRAMER C L,WIEBER N R,AGUIRRE T G,et al.Shape retention and infiltration height in complex WC-Co parts made via binder jet of WC with subsequent Co melt infiltration[J]. Additive Manufacturing,2019,29:100828. [71] CRAMER C L,AGUIRRE T G,WIEBER N R,et al.Binder jet printed WC infiltrated with pre-made melt of WC and Co[J]. International Journal of Refractory Metals&Hard Materials,2020,87:105137. [72] KONYASHIN I,HINNERS H,RIES B,et al. Additive manufacturing of WC-13%Co by selective electron beam melting:Achievements and challenges[J]. International Journal of Refractory Metals&Hard Materials,2019,84:105028. [73] ZHANG X Y,GUO Z M,CHEN C G,et al. Additive manufacturing of WC-20Co components by 3D gel-printing[J]. International Journal of Refractory Metals and Hard Materials,2018,70:215-223. [74] YANG Y K,ZHANG C Q,WANG D Y,et al. Additive manufacturing of WC-Co hard metals:a review[J]. The International Journal of Advanced Manufacturing Technology,2020,108:1653-1673. [75] KUKLA C,GONZALEZ G J,BURKHARDT C,et al.The production of magnets by FFF-fused filament fabrication[C]//Proceedings of Proceedings of the Euro PM2017 Congress&Exhibition,2017,4:1-5. [76] LENGAUER W,DURETEK I,FURST M,et al. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components[J]. International Journal of Refractory Metals&Hard Materials,2019,82:141-149. |