[1] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [2] ZHAO Rui,YAN Ruqiang,CHEN Zhenghua,et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing,2019,115:213-237. [3] 姜洪开,邵海东,李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报,2019,55(7):27-34. JIANG Hongkai,SHAO Haidong,LI Xingqiu. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering,2019,55(7):27-34. [4] 雷亚国,杨彬,杜兆钧,等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报,2019,55(7):1-8. LEI Yaguo,YANG Bin,DU Zhaojun,et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering,2019,55(7):1-8. [5] 邵海东,张笑阳,程军圣,等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报,2020,56(9):84-90. SHAO Haidong,ZHANG Xiaoyang,CHENG Junsheng,et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering,2020,56(9):84-90. [6] YANG Bin,LEI Yaguo,JIA Feng,et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019,122:692-706 [7] AN Zenghui,LI Shunming,XIN Yu,et al. An intelligent fault diagnosis framework dealing with arbitrary length inputs under different working conditions[J]. Measurement Science and Technology, 2019,30(12):125107. [8] ZHAO Bo,ZHANG Xianmin,,ZHAN Zhenhui, et al. Deep multi-scale adversarial network with attention:A novel domain adaptation method for intelligent fault diagnosis[J]. Journal of Manufacturing Systems, 2021, 59:565-576. [9] QIN Yi,YAO Qunwang,WANG Yi,et al. Parameter sharing adversarial domain adaptation networks for fault transfer diagnosis of planetary gearboxes[J]. Mechanical Systems and Signal Processing,2021,160:107936. [10] LI Xingqiu,JIANG Hongkai,WANG Ruixin,et al. Rolling bearing fault diagnosis using optimal ensemble deep transfer network[J]. Knowledge-Based Systems, 2021,213:106695. [11] 向家伟. 数值模型驱动的传动系统故障个性化诊断原理[J]. 机械工程学报,2021,57(15):116-128. XIANG Jiawei. Numerical model driving personalized diagnosis principle for fault[J]. Journal of Mechanical Engineering,2021,57(15):116-128. [12] 陈雪峰,訾艳阳. 智能运维与健康管理[M]. 北京:机械工业出版社,2018. CHEN Xuefeng,ZI Yanyang. Intelligent maintenance and health management[M]. Beijing:China Machine Press,2018. [13] ZHOU Yuxuan,DONG Yining,ZHOU Hongkuan,et al. Deep dynamic adaptive transfer network for rolling bearing fault diagnosis with considering cross-machine instance[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:3112800. [14] LI Weihua,CHEN Zhuyun,HE Guolin. A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery[J]. IEEE Transactions on Industrial Informatics,2021,17(3):1753-1762. [15] YAROSLAV G,EVGENIYA U, HANA A,et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research,2016,17(1):2096-2030. [16] 陈果. 转子-滚动轴承-机匣耦合系统中滚动轴承故障的动力学分析[J]. 振动工程学报,2008,21(6):577-587. CHEN Guo. Dynamic analysis of ball bearing faults in rotor-ball bearing-stator coupling system[J]. Journal of Vibration Engineering,2008,21(6):577-587. [17] YU Kun,FU Qiang,MA Hui,et al. Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis[J]. Structural Health Monitoring,2021,20(4):14759217 20980718. [18] LONG Mingsheng,ZHU Han,WANG Jianmin,et al. Deep transfer learning with joint adaptation networks[C]//International conference on machine learning,PMLR,2017,70:2208-2217. [19] CAO Hongru,SHAO Haidong,ZHONG Xiang,et al. Unsupervised domain-share CNN for machine fault transfer diagnosis from steady speeds to time-varying speeds[J]. Journal of Manufacturing Systems,2022,62:186-198. [20] SHAO Haidong,JIANG Hongkai,ZHANG Haizhou,et al. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network[J]. IEEE Transactions on Industrial Electronics,2018,65(3):2727-2736. |