• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (24): 1-17.doi: 10.3901/JME.2023.24.001

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

金属构件硬度的无损检测研究进展与展望

沙经伟1, 范孟豹1, 曹丙花2, 杨雪锋1   

  1. 1. 中国矿业大学机电工程学院 徐州 221116;
    2. 中国矿业大学信息与控制工程学院 徐州 221116
  • 收稿日期:2023-03-01 修回日期:2023-08-09 出版日期:2023-12-20 发布日期:2024-03-05
  • 通讯作者: 范孟豹(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为涡流/太赫兹无损检测理论及应用。E-mail:wuzhi3495@cumt.edu.cn
  • 作者简介:沙经伟,男,1994年出生,博士研究生。主要研究方向为无损检测。E-mail:TB19050005B2@cumt.edu.cn
  • 基金资助:
    国家自然科学基金(52077214)和江苏高校优势学科建设工程资助项目

Non-destructive Testing for Hardness of Metal Components:Recent Advances and Future Perspectives

SHA Jingwei1, FAN Mengbao1, CAO Binghua2, YANG Xuefeng1   

  1. 1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116;
    2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116
  • Received:2023-03-01 Revised:2023-08-09 Online:2023-12-20 Published:2024-03-05

摘要: 金属构件的硬度是其力学和机械性能的关键指标之一,因此硬度检测在工业生产中具有重要意义。传统的硬度检测方法通常采用压痕或划痕等方式,这种方法存在破坏性大、效率低等问题,难以满足现代化检测的需求,因此,无损检测方法成为当前研究的热点。随着声学、电磁学等领域的发展,基于这些技术的硬度无损检测技术应运而生。首先,对基于声学、电磁学的硬度无损检测技术进行系统的阐述,并探讨不同材料微观结构变化对检测特征的影响。通过对特征与微观结构之间的关系进行分析,深入地理解硬度无损检测技术的原理和应用。接下来,综述一些基于神经网络的新型信号处理方法,这些方法在提高检测精度和优化信号处理算法方面都表现出了巨大的潜力。最后,展望硬度无损检测技术的未来发展趋势。

关键词: 硬度, 无损检测, 超声检测, 微磁检测, 涡流检测

Abstract: The hardness of metallic components is a crucial indicator of their mechanical and physical properties, making hardness testing an important aspect of industrial production. Traditional methods of hardness testing, such as indentation or scratch tests, suffer from issues such as high destructiveness and low efficiency, rendering them unsuitable for modern testing needs. Therefore, non-destructive testing methods have emerged as a research hotspot. With the development of acoustic and electromagnetic technologies, non-destructive hardness testing techniques based on these technologies have been developed. Herein, a systematic description of non-destructive hardness testing techniques based on acoustic and electromagnetic methods is presented, and the influence of different material microstructural changes on the detection characteristics is explored. Through an analysis of the relationship between characteristics and microstructural changes, a deeper understanding of the principles and applications of non-destructive hardness testing techniques is gained. Subsequently, novel signal processing methods based on neural networks are reviewed, which have shown great potential in improving detection accuracy and optimizing signal processing algorithms. Finally, future development trends of non-destructive hardness testing techniques are discussed.

Key words: hardness, non-destructive testing, ultrasonic testing, micromagnetic testing, eddy current testing

中图分类号: