机械工程学报 ›› 2023, Vol. 59 ›› Issue (24): 1-17.doi: 10.3901/JME.2023.24.001
沙经伟1, 范孟豹1, 曹丙花2, 杨雪锋1
收稿日期:
2023-03-01
修回日期:
2023-08-09
出版日期:
2023-12-20
发布日期:
2024-03-05
通讯作者:
范孟豹(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为涡流/太赫兹无损检测理论及应用。E-mail:wuzhi3495@cumt.edu.cn
作者简介:
沙经伟,男,1994年出生,博士研究生。主要研究方向为无损检测。E-mail:TB19050005B2@cumt.edu.cn
基金资助:
SHA Jingwei1, FAN Mengbao1, CAO Binghua2, YANG Xuefeng1
Received:
2023-03-01
Revised:
2023-08-09
Online:
2023-12-20
Published:
2024-03-05
摘要: 金属构件的硬度是其力学和机械性能的关键指标之一,因此硬度检测在工业生产中具有重要意义。传统的硬度检测方法通常采用压痕或划痕等方式,这种方法存在破坏性大、效率低等问题,难以满足现代化检测的需求,因此,无损检测方法成为当前研究的热点。随着声学、电磁学等领域的发展,基于这些技术的硬度无损检测技术应运而生。首先,对基于声学、电磁学的硬度无损检测技术进行系统的阐述,并探讨不同材料微观结构变化对检测特征的影响。通过对特征与微观结构之间的关系进行分析,深入地理解硬度无损检测技术的原理和应用。接下来,综述一些基于神经网络的新型信号处理方法,这些方法在提高检测精度和优化信号处理算法方面都表现出了巨大的潜力。最后,展望硬度无损检测技术的未来发展趋势。
中图分类号:
沙经伟, 范孟豹, 曹丙花, 杨雪锋. 金属构件硬度的无损检测研究进展与展望[J]. 机械工程学报, 2023, 59(24): 1-17.
SHA Jingwei, FAN Mengbao, CAO Binghua, YANG Xuefeng. Non-destructive Testing for Hardness of Metal Components:Recent Advances and Future Perspectives[J]. Journal of Mechanical Engineering, 2023, 59(24): 1-17.
[1] GE Leyi,ZHAO Wei,ZHOU Jing,et al. Mechanics analysis and simulation of material Brinell hardness measurement[J]. Measurement,2011,44(10):2129-2137. [2] TAK N H,LEE H M,BAHNG G. Effects of differences in hardness measurement procedures on the traceability chain and calibration process[J]. Metrologia,2013,50(3):249-256. [3] VARGAS A L M,BLANDO E,HÜBLER R. Elasto-Plastic materials behavior evaluation according to different models applied in indentation hardness tests[J]. Measurement,2019,139:134-139. [4] SINGH R,KUMAR R,FEO L,et al. Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications[J]. Composites Part B:Engineering,2016,101:77-86. [5] LIU Dianzhong,LIU Xinyi,FU Feng,et al. Nondestructive post-fire damage assessment of structural steel members using leeb harness method[J]. Fire Technology,2020,56(4):1777-1799. [6] 蔡鹏,程玉华,谢驰,等. 超声波技术用于零件表面硬度无损检测的研究[J]. 工具技术,2007(2):85-89. CAI Peng,CHENG Yuhua,XIE Chi,et al. Study on non-destructive testing of surface hardness of parts using ultrasonic technology[J]. Tool Engineering,2007(2):85-89. [7] 何克勤. 超声波硬度计的原理及应用[J]. 工程与试验,2013(S1):51-53. HE Keqin. Principle and application of ultrasonic hardness tester[J]. Engineering and Experiment,2013(S1):51-53. [8] 中华人民共和国工业和信息化部. 中华人民共和国机械行业标准:超声硬度计[M]. 北京:机械工业出版社,2010. Ministry of Industry and Information Technology of the People's Republic of China. Industry standard of the People's Republic of China:Ultrasonic hardness tester[M]. Beijing:China Machine Press,2010. [9] AOYAGI R,UMEZU K. Comparison of Ultrasonic-hardness-tester hardness and micro-vickers hardness[J]. Japanese Journal of Applied Physics,2007,46(7S):4558. [10] KUMAR A,JAYAKUMAR T,RAJ B,et al. Characterization of solutionizing behavior in VT14 titanium alloy using ultrasonic velocity and attenuation measurements[J]. Materials Science and Engineering:A,2003,360(1):58-64. [11] TOOZANDEHJANI M,MATORI K A,OSTOVAN F,et al. On the correlation between microstructural evolution and ultrasonic properties:A review[J]. Journal of Materials Science,2015,50(7):2643-2665. [12] 何存富,郑明方,吕炎,等. 超声导波检测技术的发展、应用与挑战[J]. 仪器仪表学报,2016,37(8):1713-1735. HE Cunfu,ZHENG Mingfang,LÜ Yan,et al. Development,application and challenges of ultrasonic guided wave testing technology[J]. Chinese Journal of Scientific Instrument,2016,37(8):1713-1735. [13] BADIDI B A,BENCHAALA A,ALEM K. Ultrasonic characterization of materials hardness[J]. Ultrasonics,2000,38(1):224-227. [14] BADIDI B A,LEBAILI S,BENCHAALA A. Grain size influence on ultrasonic velocities and attenuation[J]. NDT & E International,2003,36(1):1-5. [15] MURTHY G V S,SRIDHAR G,KUMAR A,et al. Characterization of intermetallic precipitates in a Nimonic alloy by ultrasonic velocity measurements[J]. Materials Characterization,2009,60(3):234-239. [16] SAHOO S,JHA B B,SAHOO T K. Microstructural characterisation of thermally degraded 2·25Cr-1Mo steel using ultrasonic measurement and its correlation with mechanical properties[J]. Materials Science and Technology,2014,30(10):1197-1204. [17] MUTHU K S. Evaluation of precipitation reaction in 2024 Al-Cu alloy through ultrasonic parameters[J]. Materials Science and Engineering:A,2011,528(12):4152-4158. [18] ZHU Lin,LIU Xinbao,FAN Ping,et al. A Study of Microstructure Evolution During Creep of 9Cr-1Mo Steel Using Ultrasonic and Hardness Measurements[J]. Journal of Materials Engineering and Performance,2019,28(4):2348-2355. [19] EL R M M,EL-DANAF E A,ALMAJID A A. Characterization and correlation of mechanical,microstructural and ultrasonic properties of power plant steel[J]. Materials Characterization,2015,100:120-134. [20] TOOZANDEHJANI M,MUSTAPHA F,ZAHARI N I,et al. Characterization of aging behavior of AA6061 aluminum alloy through destructive and ultrasonic non-destructive testing techniques[J]. Transactions of the Indian Institute of Metals,2015,68(4):561-569. [21] VIJAYALAKSHMI K,MUTHUPANDI V,JAYACHITRA R. Influence of heat treatment on the microstructure,ultrasonic attenuation and hardness of SAF 2205 duplex stainless steel[J]. Materials Science and Engineering:A,2011,529:447-451. [22] HSIA S Y,CHOU Y T. Assessing the hardness of quenched medium steel using an ultrasonic nondestructive method[J]. Advances in Materials Science and Engineering,2015,2015:1-8. [23] CARREÓN H,BARRERA G,NATIVIDAD C,et al. Relation between hardness and ultrasonic velocity on pipeline steel welded joints[J]. Nondestructive Testing and Evaluation,2016,31(2):97-108. [24] UZUN F,BILGE A N. Acomprehensive model for hardness evaluation of low-alloy steels based on carbon content and ultrasonic wave velocity[J]. Materials Evaluation,2017,75(12):1489-1496. [25] DEMIAN M,DEMIAN G,GRECU L,et al. Influence of the heat treatment and the ultrasonic waves attenuation at the 34MoCrNi14 steel[C]//Amta '09:Proceedings of the 10th Wseas International Conference on Acoustics and Music:Theory and Applications,2009:79-82. [26] MOGHANIZADEH A,FARZI A. Effect of heat treatment on an AISI 304 austenitic stainless steel evaluated by the ultrasonic attenuation coefficient[J]. Materials Testing,2016,58(5):448-452. [27] KORDE N,KUNDU T. Guided waves for monitoring heat treatment duration and material hardness[C]//Health Monitoring of Structural and Biological Systems. 2012:8348. [28] KORDE N,KUNDU T. Material hardness and ageing measurement using guided ultrasonic waves[J]. Ultrasonics,2013,53(2):506-510. [29] 苑博,税国双,汪越胜. 非线性超声混频检测技术在无损检测中的研究进展[J]. 机械工程学报,2019,55(16):33-46. YUAN Bo,SHUI Guoshuang,WANG Yuesheng. Research progress on nonlinear ultrasonic mixing detection technology in non-destructive testing[J]. Journal of Mechanical Engineering,2019,55(16):33-46. [30] METYA A K,DAS A,TARAFDER S,et al. Nonlinear Lamb wave for the evaluation of creep damage in modified 9Cr-1Mo steel[J]. NDT & E International,2019,107:102130. [31] LI Weibin,JIANG Chang,XIAO Jun,et al. Assessment of thermal damage in polymethyl methacrylate using quasi-staticcomponents of ultrasonic waves[J]. Journal of Nondestructive Evaluation,2023,42(1):13. [32] LI Weibin,LAN Zifeng,HU Ning,et al. Modeling and simulation of backwardcombined harmonic generation induced by one-way mixing of longitudinal ultrasonic guided waves in a circular pipe[J]. Ultrasonics,2021,113:106356. [33] HURLEY D C,BALZAR D,PURTSCHER P T,et al. Nonlinear ultrasonic parameter in quenched martensitic steels[J]. Journal of Applied Physics,1998,83(9):4584-4588. [34] ZINCK A A,KRISHNASWAMY S. Ultrasonic nonlinearity measurements on rolled polycrystalline copper[C]//Review of Progress in Quantitative Nondestructive Evaluation,2010:1404. [35] 刘瑶璐,胡宁,邓明晰,等. 板壳结构中的非线性兰姆波[J]. 力学进展,2017,47(1):503-533. LIU Yaolu,HU Ning,DENG Mingxi,et al. Nonlinear lamb waves in plate and shell structures[J]. Advances in Mechanics,2017,47(1):503-533. [36] CHOI S,RYU J,KIM J S,et al. Comparison of linear and nonlinear ultrasonic parameters in characterizing grain size and mechanical properties of 304L stainless steel[J]. Metals,2019,9(12):1279. [37] CHEN Xi,WU Guanhua,ZHOU Zhenggan,et al. Study of the relationship between ultrasonic properties and microstructure of nickel-based superalloy GH706[J]. Insight,2017,59(11):609-614. [38] MAO Hanling,LI Qingzhu,MAO Hanying,et al. Nonlinear ultrasonic characterization of carburized case depth[J]. NDT & E International,2020,112:102244. [39] MEN Ping,DONG Shiyun,KANG Xueliang,et al. Research on the method of quantitative evaluating material hardness and tensile strength by critically refracted longitudinal wave[J]. Applied Acoustics,2020,159:107105. [40] BEHJATI P,VAHID DASTJERDI H,MAHDAVI R,et al. Effect of microstructure on attenuation mechanism of ultrasonic waves in carbon steels[J]. Materials Science and Technology,2010,26(4):482-486. [41] SOLODOV I,DILLENZ A,KREUTZBRUCK M. A new mode of acoustic NDT via resonant air-coupled emission[J]. Journal of Applied Physics,2017,121(24):245101. [42] QI Qingli,LI Jiheng,MU Xing,et al. Microstructure evolution and magnetic properties of annealed magnetostrictive Fe81Al19 coatings and their ultrasonic guided wave transducing performance[J]. Surface & Coatings Technology,2019,367:19-29. [43] WU Dehui,YANG Jiaxin,CHEN Wenxiong,et al. An electromagnetic acoustic transducer with electromagnetic pulse restraining[J]. Insight,2021,63(2):111-117. [44] ZHANG Kuanshuang,LI Shicheng,ZHOU Zhenggan. Detection of disbonds in multi-layer bonded structures using the laser ultrasonic pulse-echo mode[J]. Ultrasonics,2019,94:411-418. [45] QIN Feng,WU Yaojin,GUO Hualing,et al. Laser ultrasonic nondestructive testing based on nonlinear ultrasonic coefficient[J]. Russian Journal of Nondestructive Testing,2020,56(3):209-221. [46] 沈功田,郑阳,蒋政培,等. 磁巴克豪森噪声技术的发展现状[J]. 无损检测,2016,38(7):66-74. SHEN Gongtian,ZHENG Yang,JIANG Zhengpei,et al. Development status of magnetic Barkhausen noise technology[J]. Nondestructive Testing,2016,38(7):66-74. [47] ZHANG Shuo. Micromagnetic and Multiparameter Measurement for Microstructural Material Properties Characterization[D]. Michigan:Michigan University,2018. [48] MOHAPATRA J N,KAMADA Y,KIKUCHI H,et al. Effect of Cr-rich phase precipitation on magnetic and mechanical properties of Fe-20% Cr alloy[J]. IEEE Transactions on Magnetics,2011,47(10):4356-4359. [49] MOHAPATRA J N,AKELA A K,DABBIRU S K,et al. Magnetic hysteresis loop technique as a NDE Tool for the evaluation of microstructure and mechanical properties of 2. 25Cr-1Mo steel[J]. Journal of Nondestructive Evaluation,2018,37(2):36. [50] 何存富,王占帅,刘秀成,等. 10CrMo910耐热钢热老化程度的磁滞回线无损表征方法[J]. 压力容器,2019,36(12):1-6. HE Cunfu,WANG Zhanshuai,LIU Xiucheng,et al. Magnetic hysteresis loop non-destructive characterization method for thermal aging degree of 10CrMo910 heat-resistant steel[J]. Pressure Vessel,2019,36(12):1-6. [51] MOHAPATRA J N,BABU T S,DABBIRU S K,et al. Magnetic hysteresis loop as a tool for the evaluation of mechanical properties of hypoeutectoid pearlitic steels with spheroidization heat treatmemt[J]. Journal of Nondestructive Evaluation,2021,40(3):73. [52] KOBAYASHI S,TAKAHASHI H,KAMADA Y. Evaluation of case depth in induction-hardened steels:Magnetic hysteresis measurements and hardness-depth profiling by differential permeability analysis[J]. Journal of Magnetism and Magnetic Materials,2013,343:112-118. [53] TAKAHASHI S,KUBOTA A,KOBAYASHI S,et al. Magnetic properties and copper precipitation in Fe-0. 3 wt.% Cu alloys[J]. Journal of Materials Processing Technology,2007,181(1):199-202. [54] VERTESY G,UCHIMOTO T,TOMÁŠ I,et al. Nondestructive characterization of ductile cast iron by magnetic adaptive testing[J]. Journal of Magnetism and Magnetic Materials,2010,322(20):3117-3121. [55] TAKAHASHI S,KUBOTA A,KOBAYASHI S,et al. Relationship between minor hysteresis loops and copper precipitation in Fe-Cu alloys[J]. International Journal of Applied Electromagnetics and Mechanics,2007,25(1-4):127-131. [56] PEREVERTOV O,STUPAKOV O,TOMÁŠ I,et al. Detection of spring steel surface decarburization by magnetic hysteresis measurements[J]. NDT & E International,2011,44(6):490-494. [57] VÉRTESY G,MÉSZÁROS I,TOMÁŠ I. Nondestructive magnetic characterization of TRIP steels[J]. NDT & E International,2013,54:107-114. [58] HE Cunfu,DOU Wenqiao,LIU Xiucheng,et al. A sensitivity mapping technique for tensile force and case depth characterization based on magnetic minor hysteresis loops[J]. Chinese Journal of Mechanical Engineering,2020,33(1):1-12. [59] 李强,缪龙秀,王润志,等. 利用巴克豪森噪声无损测量铁磁材料硬度试验研究[J]. 北方交通大学学报,2000(1):84-86. LI Qiang,MIAO Longxiu,WANG Runzhi,et al. Experimental study on nondestructive testing of hardness of ferromagnetic materials using Barkhausen noise[J]. Journal of Northern Jiaotong University,2000(1):84-86. [60] 王京云,李志谭. 用巴克豪森噪声法测量铁磁材料的硬度[J]. 太原重型机械学院学报,2001(2):153-155,159. WANG Jingyun,LI Zhitan. Measurement of hardness of ferromagnetic materials using Barkhausen noise method[J]. Journal of Taiyuan Heavy Machinery Institute,2001(2):153-155,159. [61] 李强,刘学文. 铁磁材料表面硬度无损测量方法的研究[J]. 无损检测,2001(3):93-95. LI Qiang,LIU Xuewen. Research on non-destructive testing method of surface hardness for ferromagnetic materials[J]. Nondestructive Testing,2001(3):93-95. [62] VAROUTI E,GIANNOULI C,PETRAKOU Z,et al. Steel Hardness Determination Using the Barkhausen Noise Effect[C]//Materials and Applications for Sensors and Transducers. 2012:229-232. [63] BYEON J W,KIM C S,KWUN S I. Evaluation of thermal degradation of 2. 25Cr-1Mo steel by magnetic Barkhausen noise[J]. Physica Status Solidi B-Basic Research,2004,241(7):1756-1760. [64] BLAOW M,EVANS J T,SHAW B A. Effect of hardness andcomposition gradients on Barkhausen emission in case hardened steel[J]. Journal of Magnetism and Magnetic Materials,2006,303(1):153-159. [65] DENG Yu,LI Zhe,CHEN Juan,et al. The effects of the structure characteristics on magnetic Barkhausen noise incommercial steels[J]. Journal of Magnetism and Magnetic Materials,2018,451:276-282. [66] 邓雨,尹亮,陈娟,等. 基于磁巴克豪森信号的碳质量分数的无损评估方法[J]. 无损检测,2018,40(1):37-42. DENG Yu,YIN Liang,CHEN Juan,et al. Non-destructive assessment method of carbon mass fraction based on magnetic Barkhausen signal[J]. Nondestructive Testing,2018,40(1):37-42. [67] 肖文凯,彭志方,王志武,等. 10CrMo910钢老化过程中的巴克豪森效应[J]. 武汉大学学报,2005(4):71-74,78. XIAO Wenkai,PENG Zhifang,WANG Zhiwu,et al. Barkhausen effect during aging process of 10CrMo910 steel[J]. Journal of Wuhan University of Technology,2005(4):71-74,78. [68] 曹锐,王平,田贵云,等. 齿轮材料有效硬化层深度对巴克豪森噪声信号的影响[J]. 无损检测,2013,35(10):59-62. CAO Rui,WANG Ping,TIAN Guiyun,et al. Influence of effective hardened layer depth of gear material on Barkhausen noise signal[J]. Nondestructive Testing,2013,35(10):59-62. [69] DAVUT K,GUER C H. Monitoring the microstructural changes during tempering of quenched SAE 5140 steel by magnetic barkhausen noise[J]. Journal of Nondestructive Evaluation,2007,26(2-4):107-113. [70] 钱王洁,刘向兵,徐超亮,等. Fe-Cu合金热老化的巴克豪森噪声研究[J]. 金属热处理,2017,42(12):232-236. QIAN Wangjie,LIU Xiangbing,XU Chaoliang,et al. Barkhausen noise study on thermal aging of Fe-Cu alloy[J]. Heat Treatment of Metals,2017,42(12):232-236. [71] RAJA A R,YUSUFZAI M Z K,VASHISTA M. Micro-magnetic analysis of friction stir welded steel plates[J]. International Journal of Advanced Manufacturing Technology,2018,97(5-8):2051-2059. [72] AVILA J A,CONDE F F,PINTO H C,et al. Microstructural and residuals stress analysis of friction stir welding of X80 pipeline steel plates using magnetic Barkhausen noise[J]. Journal of Nondestructive Evaluation,2019,38(4):86. [73] MICIETOVA A,PISTORA J,DURSTOVA Z,et al. Concept of damage monitoring after grinding forcomponents of variable hardness[C]//6th New Methods of Damage and Failure Analysis of Structural Parts,2016:60-65. [74] LASAOSA A,GURRUCHAGA K,ARIZTI F,et al. Induction hardened layer characterization and grinding burn detection by magnetic Barkhausen noise analysis[J]. Journal of Nondestructive Evaluation,2017,36(2):27. [75] 易军,金滩,张明东. 基于磨削功率测量和巴克豪森无损检测的齿轮成形磨削烧伤研究[J]. 机械传动,2019,43(9):109-112,132. YI Jun,JIN Tan,ZHANG Mingdong. Study on grinding burn in gear forming based on grinding power measurement and Barkhausen non-destructive testing[J]. Mechanical Transmission,2019,43(9):109-112,132. [76] NORDIN E,ALFREDSSON B. Experimental investigation of shot peening on case hardened SS2506 gear steel[J]. Experimental Techniques,2017,41(4):433-451. [77] SORSA A,SANTA-AHO S,AYLOTT C,et al. Case depth prediction of nitrided samples with Barkhausen noise measurement[J]. Metals,2019,9(3):325. [78] ZHANG Xiang,QIAO Sen,PENG Jianping,et al. Determination of hardness in welded rail surface via Barkhausen noise[C]//Proceedings of 2019 Far East NDT New Technology & Application Forum,2019:158-162. [79] LUO Xiaoyu,ZHANG Yu,WANG Zijian,et al. Non-destructive testing device for hot forming high strength steel parts based on Barkhausen noise[C]//Applied Materials and Technologies for Modern Manufacturing. 2013:2555-2558. [80] 潘立,张士晶,万刚,等. 基于巴克豪森效应的铁磁性材料硬度检测[J]. 无损检测,2016,38(12):28-31. PAN Li,ZHANG Shijing,WAN Gang,et al. Hardness testing of ferromagnetic materials based on Barkhausen effect[J]. Nondestructive Testing,2016,38(12):28-31. [81] SEND S,DAPPRICH D,THOMAS J,et al. Non-destructive case depth determination by means of low-frequency Barkhausen noise measurements[J]. Journal of Nondestructive Evaluation,2018,37(4):82. [82] 付依丹,刘峰,蔡桂喜,等. 巴克豪森法测量不明显的钢淬火硬化层深度[J]. 金属热处理,2018,43(9):242-245. FU Yidan,LIU Feng,CAI Guixi,et al. Measurement of quenching hardening depth of steel with non-obvious indication by Barkhausen method[J]. Heat Treatment of Metals,2018,43(9):242-245. [83] 屈辰鸣,孙俊杰,李廷超,等. 基于巴克豪森噪声的渗碳层深度检测方法[J]. 无损检测,2018,40(4):36-40. QU Chenming,SUN Junjie,LI Tingchao,et al. Detection method of carburizing layer depth based on Barkhausen noise[J]. Nondestructive Testing,2018,40(4):36-40. [84] SANTA-AHO S,VIPPOLA M,SORSA A,et al. Utilization of Barkhausen noise magnetizing sweeps for case-depth detection from hardened steel[J]. NDT & E International,2012,52:95-102. [85] ROSKOSZ M,FRYCZOWSKI K,SCHABOWICZ K. Evaluation of ferromagnetic steel hardness based on an analysis of the Barkhausen noise number of events[J]. Materials,2020,13(9):2059. [86] CILLIKOVA M,URICEK J,NESLUSAN M,et al. Monitoring of thermal damage after deposition of coatings via Barkhausen noise technique[J]. Acta Physica Polonica A,2020,137(5):637-639. [87] ZEROVNIK P,GRUM J,ZEROVNIK G. Determination of hardness and residual-stress variations in hardened surface layers with magnetic Barkhausen noise[J]. IEEE Transactions on Magnetics,2010,46(3):899-904. [88] FRANCO F A,GONZÁLEZ M F R,de CAMPOS M F,et al. Relation between magnetic Barkhausen noise and hardness for jominy quench tests in SAE 4140 and 6150 steels[J]. Journal of Nondestructive Evaluation,2013,32(1):93-103. [89] LUO Xiaoyu,WANG Yilin,WANG Liang,et al. Non-destructive hardness measurement of hot-stamped high strength steel sheets based on magnetic Barkhausen noise[C]//International Conference on Technology of Plasticity,2014:1768-1773. [90] LUO Xiaoyu,WANG Yilin,ZHU Bin,et al. Super-resolution spectral analysis and signal reconstruction of magnetic Barkhausen noise[J]. NDT & E International,2015,70:16-21. [91] SUN Guangmin,LIU Hao,HE Cunfu,et al. A novel prediction method for hardness using auto-regressive spectrum of Barkhausen noise[J]. Journal of Nondestructive Evaluation,2018,37(4):1-11. [92] DING Song,TIAN Guiyun,SUTTHAWEEKUL R. Non-destructive hardness prediction for 18CrNiMo7-6 steel based on feature selection and fusion of Magnetic Barkhausen Noise[J]. NDT & E International,2019,107:102138. [93] 程志远,宋凯,门平,等. 磁巴克豪森噪声重构磁滞参数的硬度测定方法[J]. 仪器仪表学报,2018,39(10):117-125. CHENG Zhiyuan,SONG Kai,MEN Ping,et al. Hardness measurement method based on magnetic Barkhausen noise reconstruction of hysteresis parameters[J]. Chinese Journal of Scientific Instrument,2018,39(10):117-125. [94] WANG Yao,FAN Mengbao,CAO Binghua,et al. Measurement of coating thickness using lift-off point of intersection features from pulsed eddy current signals[J]. NDT & E International,2020,116:102333. [95] SHA Jingwei,FAN Mengbao,CAO Binghua,et al. Noncontact and nondestructive evaluation of heat-treated bearing rings using pulsed eddy current testing[J]. Journal of Magnetism and Magnetic Materials,2021,521:167516. [96] SOPHIAN A,TIAN Guiyun,FAN Mengbao. Pulsed eddy current non-destructive testing and evaluation:A review[J]. Chinese Journal of Mechanical Engineering,2017,30(6):500-514. [97] UCHIMOTO T,TAKAGI T,KONOPLYUK S,et al. Eddy current evaluation of cast irons for material characterization[J]. Journal of Magnetism and Magnetic Materials,2003,258-259:493-496. [98] KONOPLYUK S,ABE T,UCHIMOTO T,et al. Characterization of ductile cast iron by eddy current method[J]. NDT & E International,2005,38(8):623-626. [99] MERCIER D,LESAGE J,DECOOPMAN X,et al. Eddy currents and hardness testing for evaluation of steel decarburizing[J]. NDT & E International,2006,39(8):652-660. [100] YIN Wuliang,HAO Xinjiang,PEYTON A J,et al. Measurement of decarburisation of steel rods with an electromagnetic sensor using an analytical model[J]. NDT & E International,2010,43(8):667-670. [101] RAJKUMAR K V,RAO B P C,SASI B,et al. Characterization of aging behaviour in M250 grade maraging steel using eddy current non-destructive methodology[J]. Materials Science and Engineering:A,2007,464(1):233-240. [102] KHAN S H,KHAN A N,ALI F,et al. Study of precipitation behavior at moderate temperatures in 350 maraging steel by eddy current method[J]. Journal of Alloys and Compounds,2009,474(1):254-256. [103] ZHANG Huayu,WEI Zhiheng,XIE Fengqin,et al. Assessment of the properties of AISI 410 martensitic stainless steel by an eddy current method[J]. Materials,2019,12(8):1290. [104] KAHROBAEE S,JAHANTIGH F E. Characterization of hadfield steels subjected to various heat-treating processes by nondestructive eddy current method[J]. Russian Journal of Nondestructive Testing,2020,56(2):151-160. [105] KAHROBAEE S,KASHEFI M. Hardness profile plotting using multi-frequency multi-output electromagnetic sensor[J]. NDT & E International,2011,44(4):335-338. [106] KIATTISAKSRI P,PHUNG-ON I,POOPAT B. A development of swept-frequency eddy current for aging characterization of heat resistant steel[J]. International Journal of Applied Electromagnetics and Mechanics,2017,55(2):279-287. [107] HEJAZI T H,KAHROBAEE S. A predictive model for characterizing hardness of D2 tool steel by eddy current method:A statistical optimization approach[J]. Research in Nondestructive Evaluation,2018,29(4):237-254. [108] 黄炎,何存富,刘秀成,等. 模具钢表面硬度的涡流无损表征方法[J]. 北京工业大学学报,2018,44(5):672-678. HUANG Yan,HE Cunfu,LIU Xiucheng,et al. Non-destructive characterization method of surface hardness of die steel based on eddy current[J]. Journal of Beijing University of Technology,2018,44(5):672-678. [109] 董海江,郑婷婷,于进涛,等. 汽车B柱加强板软硬部过渡特性的磁巴克豪森噪声检测方法[J]. 机械工程学报,2023,59(4):10-17. DONG Haijiang,ZHENG Tingting,YU Jintao,et al. Magnetic Barkhausen noise detection method for soft-hard transition characteristics of automobile B-pillar reinforcement plate[J]. Journal of Mechanical Engineering,2023,59(4):10-17. [110] KAHROBAEE S,SAHRAEI H N,AKHLAGHI I A. Nondestructive characterization of microstructure and mechanical properties of heat treated H13 tool steel using magnetic hysteresis loop methodology[J]. Research in Nondestructive Evaluation,2019,30(5):303-315. [111] HAGHIGHI M S,KAHROBAEE S. Application of Data fusion methods for nondestructive assessment of hardness of D2 tool steels[C]//26th Iranian Conference on Electrical Engineering,2018:1698-1702. [112] ZHU Zhongyang,SUN Guangmin,HE Cunfu. An intelligent approach for simultaneously performing material type recognition and case depth prediction in two types of surface-hardened steel rods using a magnetic hysteresis loop[J]. Measurement Science and Technology,2019,30(10):105601. [113] ZHU Zhongyang,SUN Guangmin,HE Cunfu,et al. An intelligent method for prediction of surface-hardness in surface-hardened steel rod[C]//20194th International Conference on Control and Robotics Engineering (ICCRE),2019:122-126. [114] KAHROBAEE S,HAGHIGHI M S,AKHLAGHI I A. Improving nondestructive characterization of dual phase steels using data fusion[J]. Journal of Magnetism and Magnetic Materials,2018,458:317-326. [115] KAHROBAEE S,HEJAZI T H,AHADI A I. Electromagnetic methods to improve the nondestructive characterization of induction hardened steels:A statistical modeling approach[J]. Surface and Coatings Technology,2019,380:125074. [116] AKHLAGHI I A,KAHROBAEE S,AKBARZADEH A,et al. Predicting hardness profile of steel specimens subjected to Jominy test using an artificial neural network and electromagnetic nondestructive techniques[J]. Nondestructive Testing and Evaluation,2020,35:1-17. [117] YANG Yongyan,FAN Mengbao,CAO Binghua,et al. Reliable characterization of bearing rings using eddy current and Barkhausen noise data fusion[J]. Journal of Magnetism and Magnetic Materials,2019,489:165349. [118] LIU Xiucheng,ZHANG Ruihuan,WU Bin,et al. Quantitative prediction of surface hardness in 12CrMoV steel plate based on magnetic barkhausen noise and tangential magnetic field measurements[J]. Journal of Nondestructive Evaluation,2018,37(2):38. [119] LIU Xiucheng,SHANG Wanli,HE Cunfu,et al. Simultaneous quantitative prediction of tensile stress,surface hardness and case depth in medium carbon steel rods based on multifunctional magnetic testing techniques[J]. Measurement,2018,128:455-463. [120] 何存富,蔡燕超,刘秀成,等. 基于磁巴克豪森噪声的S136钢表面硬度定量预测模型对比[J]. 机械工程学报,2019,55(18):15-21. HE Cunfu,CAI Yanchao,LIU Xiucheng,et al. Comparison of quantitative prediction models for surface hardness of S136 steel based on magnetic Barkhausen noise[J]. Journal of Mechanical Engineering,2019,55(18):15-21. [121] 张传栋,何存富,刘秀成,等. 基于BP神经网络的钢轴表面硬度磁巴克豪森噪声定量检测技术[J]. 实验力学,2020,35(1):1-8. ZHANG Chuandong,HE Cunfu,LIU Xiucheng,et al. Quantitative detection of steel shaft surface hardness based on magnetic Barkhausen noise and BP neural network[J]. Journal of Experimental Mechanics,2020,35(1):1-8. [122] DONG Haijiang,LIU Xiucheng,SONG Yahu,et al. Quantitative evaluation of residual stress and surface hardness in deep drawn parts based on magnetic Barkhausen noise technology[J]. Measurement,2021,168:108473. [123] 夏鹏,魏志辉. 基于电磁无损检测的车轮钢表面硬度检测方法[J]. 物理测试,2021,39(2):19-23. XIA Peng,WEI Zhihui. Surface hardness testing method of wheel steel based on electromagnetic nondestructive testing[J]. Physical Testing,2021,39(2):19-23. [124] ZHOU Dingxuan. Deep distributed convolutional neural networks:Universality[J]. Analysis and Applications,2018,16(6):895-919. [125] SHA Jingwei,FAN Mengbao,YE Bo. Intelligent hardness prediction of bearing rings using pulsed eddy current testing[J]. IEEE Sensors Journal,2022,22(23):23320-23327. [126] 谭君洋,夏丹,董世运,等. 特征参量选择对磁巴克豪森噪声评价材料硬度的影响[J]. 中国表面工程,2021,34(1):8-15. TAN Junyang,XIA Dan,DONG Shiyun,et al. Effect of feature parameter selection on magnetic Barkhausen noise evaluation of material hardness[J]. China Surface Engineering,2021,34(1):8-15. [127] TAN Junyang,XIA Dan,DONG Shiyun,et al. Research on joint nondestructive testing based on neural network[C]//Intelligent Computing and Internet of Things,2018:458-467. [128] TAJBAKHSH N,SHIN J Y,GURUDU S R,et al. Convolutional neural networks for medical image analysis:Full training or fine tuning?[J]. IEEE Transactions on Medical Imaging,2016,35(5):1299-1312. [129] SHIN H C,ROTH H R,GAO Mingchen,et al. Deep convolutional neural networks forcomputer-aided detection:CNN architectures,dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging,2016,35(5):1285-1298. [130] SUN Jia,WANG Peng,LUO Yongkang,et al. Surface defects detection based on adaptive multiscale image collection and convolutional neural networks[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(12):4787-4797. [131] TU Keling,WEN Shaozhe,CHENG Ying,et al. A non-destructive and highly efficient model for detecting the genuineness of maize variety 'JINGKE 968' using machine visioncombined with deep learning[J]. Computers and Electronics in Agriculture,2021,182:106002. [132] LI Weihua,HUANG Ruyi,LI Jipu,et al. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios:Theories,applications and challenges[J]. Mechanical Systems and Signal Processing,2022,167:108487. [133] LI Yahui,LIU Jun,WANG Lilin. Lightweight network research based on deep learning:A review[C]//201837th Chinese Control Conference,2018:9021-9026. [134] LIU Di,KONG Hao,LUO Xiangzhong,et al. Bringing AI to edge:From deep learning's perspective[J]. Neurocomputing,2022,485:297-320. |
[1] | 王湃, 白翌帆, 赵文祥, 张毅博, 刘志兵. 高温合金短电弧辅助铣削表面完整性演化研究[J]. 机械工程学报, 2024, 60(9): 434-444. |
[2] | 梁鹏, 赵文卓, 武通海, 冉毅. 发电机转子小齿裂纹的超声回波特性及在机检测方法[J]. 机械工程学报, 2024, 60(8): 11-21. |
[3] | 冒爱琴, 陈诗洁, 贾洋刚, 邵霞, 权峰, 张晖, 张义伟, 金莹, 金霞. Al含量对粉末冶金CoCrFeMnNi高熵合金组织结构与性能的影响[J]. 机械工程学报, 2024, 60(20): 134-143. |
[4] | 曾凯, 田海, 邢保英, 张洪申, 王凯伟, 何晓聪. 自冲铆机械内锁结构形态的超声无损检测方法[J]. 机械工程学报, 2024, 60(2): 10-16. |
[5] | 涂洪铭, 伍剑波, 柯瑞, 夏慧, 陈笑天, MACIEJ Roskosz. 激励参数对Q235钢增量磁导率蝶形图的影响研究[J]. 机械工程学报, 2024, 60(2): 27-35. |
[6] | 温雪龙, 赵正豪, 巩亚东, 李俊鹏. FeCoNiCrAlx高熵合金铣削表面质量影响因素实验研究[J]. 机械工程学报, 2024, 60(17): 367-378. |
[7] | 曾鑫, 赖建平, 王驰, 袁小虎, 李丁骏, 余家欣. 基于高通量磁控共溅射技术的非晶合金纳米摩擦学性能研究[J]. 机械工程学报, 2024, 60(15): 185-193. |
[8] | 赵宇辉, 赵吉宾, 李明玥, 何振丰, 王志国, 贺晨. 激光熔化沉积TC4钛合金电涡流检测仿真及亚表面缺陷检测[J]. 机械工程学报, 2024, 60(14): 34-41. |
[9] | 舒康, 丁昊昊, 林强, 王文健, 郭俊, 刘启跃. 中等强度沙尘暴环境下钢轨硬度对轮轨滚动磨损与损伤影响[J]. 机械工程学报, 2023, 59(9): 186-197. |
[10] | 林莉, 马志远, 孙珞茗, 罗忠兵, 雷明凯. 航空功能涂层表界面完整性参数超声检测反演原理及其应用[J]. 机械工程学报, 2023, 59(8): 1-8. |
[11] | 陈辉, 傅作华, 陈得良, 孟铮, 范中天. 基于维氏压入理论模型的材料塑性参数与硬度一体化预测方法[J]. 机械工程学报, 2023, 59(8): 132-141. |
[12] | 宿磊, 谈世宏, 吉勇, 明雪飞, 顾杰斐, 李可. 基于训练局部字典的倒装芯片高频超声检测信号稀疏去噪方法[J]. 机械工程学报, 2023, 59(6): 10-17. |
[13] | 何赟泽, 李响, 王洪金, 侯岳骏, 张帆, 牟欣颖, 刘浩, 程豪, 李时华, 李杰. 基于可见光和热成像的风机叶片全周期无损检测综述[J]. 机械工程学报, 2023, 59(6): 32-45. |
[14] | 沈功田, 金灿华, 张君娇, 胡斌, 刘渊, 王强. 无损云检测技术研究及仪器系统开发[J]. 机械工程学报, 2023, 59(4): 1-9. |
[15] | 董海江, 郑婷婷, 于进涛, 付正家, 刘秀成, 邢智翔, 闫正祥, 何存富. 汽车B柱加强板软硬部过渡特性的磁巴克豪森噪声检测方法[J]. 机械工程学报, 2023, 59(4): 10-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||