[1] 陈泽宇,熊瑞,孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报, 2019, 55(24):93-104, 116. CHEN Zeyu, XIONG Rui, SUN Fengchun. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(24):93-104, 116. [2] 李志杰,陈吉清,兰凤崇,等. 机械外力下动力电池包的系统安全性分析与评价[J]. 机械工程学报, 2019, 55(12):137-148. LI Zhijie, CHEN Jiqing, LAN Fengchong, et al. Analysis and evaluation on system safety of power battery pack under mechanical loading[J]. Journal of Mechanical Engineering, 2019, 55(12):137-148. [3] 王震坡,王秋诗,刘鹏,等. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2):151-168. WANG Zhenpo, WANG Qiushi, LIU Peng, et al. Review on techniques for power battery state of health estimation driven by big data methods[J]. Journal of Mechanical Engineering, 2023, 59(2):151-168. [4] LI X, WANG Z, YAN J. Prognostichealth condition for lithium battery using the partial incremental capacity and gaussian process regression[J]. Journal of Power Sources, 2019, 421:56-67. [5] FAN J, FAN, J, LIU F, et al. A novel machine learning method based approach for Li-Ion battery prognostic and health management[J]. IEEE Access, 2019, 7:160043-160061. [6] PHATTARA K, NITA Y. A data-driven predictive prognostic model for Lithium-ion batteries based on a deep learning algorithm[J]. Energies, 2019, 12(4):660. [7] XIA B, SHANG Y, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337:1-10. [8] 胡杰,朱雪玲,何陈,等. 基于实车数据的电动汽车电池健康状态预测[J]. 汽车工程, 2021, 43(9):1291-1299, 1313. HU Jie, ZHU Xueling, HE Chen, et al. Prediction on battery state of health of electric vehicles based on real vehicle data[J]. Automotive Engineering, 2021, 43(9):1291-1299, 1313. [9] 余深泽. 基于实时数据的电动车电池续航预测方法研究[D]. 哈尔滨:哈尔滨工业大学, 2021. Yu Shenze. Research on battery life prediction method of electric vehicle based on real-time data[D]. Harbin:Harbin Institute of Technology, 2021. [10] WANG Z, SONG C, ZHANG L, et al. A data-driven method for battery charging capacity abnormality diagnosis in electric vehicle applications[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1):990-999. [11] LI D, ZHANG Z, LIU P, et al. DBSCAN-based thermal runaway diagnosis of battery systems for electric vehicles[J]. Energies, 2019, 12(15):2977. [12] PAN Y, FENG X, ZHANG M, et al. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections[J]. Journal of Cleaner Production, 2020, 255:120277. [13] LYU Z, GAO R, LI X. A Partial charging curve-based data-fusion-model method for capacity estimation of Li-Ion battery[J]. Journal of Power Sources, 2021, 483:229131. [14] XIONG R, YANG R, CHEN Z, et al. Online fault diagnosis of external short circuit for lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2):1081-1091. [15] WANG Z, HONG J, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196:289-302. [16] ZHAO Y, LIU P, WANG Z, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207:354-362. [17] CONG X, ZHANG C, JIANG J, et al. An improved unscented particle filter method for remaining useful life prognostic of Lithium-ion batteries with Li(NiMnCo)O2 cathode with capacity diving[J]. IEEE Access, 2020, 8:58717-58729. [18] CONG X, ZHANG C, JIANG J, et al. A comprehensive fault diagnosis method for Lithium-ion batteries in electric vehicles[J]. Energies, 2021, 14:1221. [19] WANG L, PAN C, LIU L, et al. On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis[J]. Applied Energy, 2016, 168:465-472. [20] JIANG L, TANG X, HU L, et al. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data[J]. Energy, 2021, 234(1):121266. [21] KANG Y, YANG X, ZHOU Z, et al. A comparative study of fault diagnostic methods for lithium-ion batteries based on a standardized fault feature comparison method[J]. Journal of Cleaner Production, 2021, 278:123424. [22] 张宇鑫,武建华,郑林峰,等. 基于数字孪生的锂离子电池管理系统设计分析[J]. 电气工程学报, 2022, 17(4):103-112. ZHANG Yuxin, WU Jianhua, ZHENG Linfeng, et al. Design and analysis of lithium-ion battery management system based on digital twin[J]. Journal of Electrical Engineering, 2022, 17(4):103-112. [23] 王功全,孔得朋,平平,等. 锂离子电池热失控模型综述[J]. 电气工程学报, 2022, 17(4):61-71. WANG Gongquan, KONG Depeng, PING Ping, et al. Thermal runaway modeling of lithium-ion batteries:A review[J]. Journal of Electrical Engineering, 2022, 17(4):61-71. [24] 程功. 电池组一致性的统计特性与变化规律研究[D]. 北京:北京交通大学, 2017. CHENG Gong. Study on statistical property and evolutions of battery pack consistency[D]. Beijing:Beijing Jiaotong University, 2017. [25] SCHUSTER S, BRAND M, BERG P, et al. Lithium-ion cell-to-cell variation during battery electric vehicle operation[J]. Journal of Power Sources, 2015, 297:242-251. |