[1] 孙振宇,王震坡,刘鹏,等. 新能源汽车动力电池统故障诊断研究综述[J]. 机械工程学报, 2021, 57(14):87-104. SUN Zhenyu, WANG Zhenpo, LIU Peng, et al. A review of fault diagnosis of power battery system for new energy vehicles[J]. Journal of Mechanical Engineering, 2021, 57(14):87-104. [2] 朱晓庆,王震坡, WANG Hsin,等. 锂离子动力电热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14):91-118. ZHU Xiaoqing, WANG Zhenpo, WANG Hsin, et al. Summary of research on thermal runaway and safety management of lithium-ion power batteries[J]. Journal of Mechanical Engineering, 2020, 56(14):91-118. [3] SU Shaosen, LI Wei, LI Yongsheng, et al. Multi-objective design optimization of battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2021, 196, 117235. [4] ZHUANG Weichao, LIU Zhitao, SU Hongye, et al. An intelligent thermal management system for optimized lithium-ion battery pack[J]. Applied Thermal Engineering, 2021, 189, 116767. [5] 王震坡,李晓宇,袁昌贵,等. 大数据下电动汽车力电池故障诊断技术挑战与发展趋势[J]. 机械工程报, 2021, 57(14):52-63. WANG Zhenpo, LI Xiaoyu, YUAN Changgui, et al. The challenges and development trends of fault diagnosis technology for electric vehicle power batteries under big data[J]. Journal of Mechanical Engineering, 2021, 57(14):52-63. [6] 胡晓松,唐小林. 电动车辆锂离子动力电池建模方综述[J]. 机械工程学报, 2017, 53(16):20-31. HU Xiaosong, TANG Xiaolin. Overview of modeling methods for lithium-ion battery of electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16):20-31. [7] 郭策,陆振玉,吴元琦. 仿生轻质结构在飞机大开区的应用及其优化设计[J]. 机械工程学报, 2017, 53(13):125-135. GUO Ce, LU Zhenyu, WU Yuanqi. Application of bionic lightweight structure in large open area of aircraft and its optimal design[J]. Journal of Mechanical Engineering, 2017, 53(13):125-135. [8] 刘景成,张树有,周智勇. 一种新型仿生翅片及其流体流动与传热影响[J]. 机械工程学报, 2015, 51(12):161-169. LIU Jingcheng, ZHANG Shuyou, ZHOU Zhiyong. A new bionic fin and its fluid flow and heat transfer effects[J]. Journal of Mechanical Engineering, 2015, 51(12):161-169. [9] 吴龙文,卢婷,陈加进,等. 芯片散热微通道仿生拓扑结构研究[J]. 电子学报, 2018, 46(5):1153-1159. WU Longwen, LU Ting, CHEN Jiajin, et al. Research on bionic topology of chip cooling microchannel[J]. Electronics, 2018, 46(5):1153-1159. [10] YANG Wen, ZHOU Fei, ZHOU Haobing, et al. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. International Journal of Heat and Mass Transfer, 2020, 161, 116649. [11] WENG Jingwen, HE Yaping, OUYANG Dongxu, et al. Honeycomb-inspired design of a thermal management module and its mitigation effect on thermal runaway propagation[J]. Applied Thermal Engineering, 2021, 195, 117147. [12] FAN Yiwei, WANG Zhaohui, FU Ting. Multi-objective optimization design of lithium-ion battery liquid cooling plate with double-layered dendritic channels[J]. Applied Thermal Engineering, 2021, 199, 117541. [13] FAN Yiwei, WANG Zhaohui, FU Ting, et al. Numerical investigation on lithium-ion battery thermal management utilizing a novel tree-like channel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2022, 183, 122143. [14] FENG Xuning, HE Xiangming, OUYANG Minggao, et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154:74-91. [15] 芮新宇,冯旭宁,韩雪冰,等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4):193-201, 205. RUI Xinyu, FENG Xuning, HAN Xuebing, et al. Review of research on thermal runaway spread of lithium ion bat-teries[J]. Battery Industry, 2020, 24(4):193-201, 205. [16] 孙建伟,张世梁,孔凡臣. 基于蜘蛛网结构的伞状机构设 计与 分析[J]. 中国 机械 工程, 2019, 30(13):1613-1620. SUN Jianwei, ZHANG Shiliang, KONG Fanchen. Design and analysis of umbrella deployable mechanism based on spider web structure[J]. China Mechanical Engineering, 2019, 30(13):1613-1620. [17] 甄明. 空间飞网仿生设计与抓捕动力学研究[D]. 长沙:国防科学技术大学, 2018. ZHEN Ming. Study on bionic design and capture dynamics of space flynet[D]. Changsha:National University of Defense Technology, 2018. [18] WANG Jianfeng, LIU Xiaodong, LIU Fen, et al. Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery[J]. Case Studies in Thermal Engineering, 2021, 26, 101124. [19] HAN XiaoHui, LIU HuanLing, XIE Gongnan, et al. Topology optimization for spider web heat sinks for electronic cooling[J]. Applied Thermal Engineering, 2021, 195, 117154. [20] YANG Wen, ZHOU Fei, LIU Yuchen, et al. Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery[J]. Applied Thermal Engineering, 2021, 188, 116649. [21] TAN Hui, WU Longwen, WANG Mingyang, et al. Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling[J]. International Journal of Heat and Mass Transfer, 2019, 129:681-689. [22] 施陈威. 三元动力电池包液冷散热分析及温控方究[D]. 温州:温州大学, 2017. SHI Chenwei. Research on liquid cold heat dissipation analysis and temperature control method of ternary power battery pack[D]. Wenzhou:Wenzhou University, 2017. [23] 王功全,孔得朋,平平,等. 锂离子电池热失控模型综述[J]. 电气工程学报, 2022, 17(4):61-71. WANG Gongquan, KONG Depeng, PING Ping, et al. Thermal runaway modeling of lithium-ion batteries:A review[J]. Journal of Electrical Engineering, 2022, 17(4):61-71. [24] SIDDIQUE A R M, MAHMUD S, VAN H. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations[J]. Journal of Power Sources, 2018, 401:224-237. [25] KARIMI G, LI X. Thermal management of lithium-ion batteries for electric vehicles[J]. International Journal of Energy Research, 2013, 37(1):13-24. [26] CHACKO S, CHUNG Y M. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213:296-303. [27] PANCHAL S, DINCER I, AGELIN C M, et al. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99:204-212. [28] DAMAY N, FORGEZ C, BICHAT M, et al. Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation[J]. Journal of Power Sources, 2015, 283:37-45. [29] INUI Y, KOBAYASHI Y, WATANABE Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries[J]. Energy Conversion and Management, 2007, 48(7):2103-2109. [30] 于仲安,陈可怡,张军令,等. 动力电池散热技术研究进展[J]. 电气工程学报, 2022, 17(4):145-162. YU Zhongan, CHEN Keyi, ZHANG Junling, et al. Research progress of power battery cooling technology[J]. Journal of Electrical Engineering, 2022, 17(4):145-162. |