[1] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104. LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104. [2] 邵海东,肖一鸣,颜深,等. 仿真数据驱动的改进无监督域适应轴承故障诊断[J]. 机械工程学报, 2023, 59(3):76-85. SHAO Haidong, XIAO Yiming, YAN Shen, et al. Simulation data-driven enhanced unsupervised domain adaptation for bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2023, 59(3):76-85. [3] ZHANG W, LI X. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision[J]. Knowledge-Based Systems, 2021, 213:106679. [4] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Machine Learning, (PMLR), 2017, 54:1273-1282. [5] 方晨,郭渊博,王一丰,等. 基于区块链和联邦学习的边缘计算隐私保护方法[J]. 通信学报, 2021, 42(11):28-40. FANG Chen, GUO Yuanbo, WANG Yifeng, et al. Edge computing privacy protection method based on blockchain and federated learning[J]. Journal on Communications, 2021, 42(11):28-40. [6] 邱天晨,郑小盈,祝永新,等. 面向非独立同分布数据的联邦学习架构[J]. 计算机工程, 2023, 49(7):110-117. QIU Tianchen, ZHENG Xiaoying, ZHU Yongxin, et al. Federated learning architecture for non-IID data[J]. Computer Engineering, 2023, 49(7):110-117. [7] MA Z, MA J, MIAO Y, et al. ShieldFL:Mitigating model poisoning attacks in privacy-preserving federated learning[J]. IEEE Transactions Information Forensics Security, 2022, 17:1639-1654. [8] ZHAO Y, ZHAO J, JIANG L, et al. Privacy-preserving blockchain-based federated learning for IoT devices[J]. IEEE Internet of Things Journal, 2021, 8(3):1817-1829. [9] ZHAO Y, LI M, LAI L, et al. Federated learning with non-IID data[EB/OL]. arXiv preprint arXiv:1806.00582, 2018. [10] KARIMIREDDY S P, KALE S, MOHRI M, et al. Suresh. Scaffold:Stochastic controlled averaging for on-device federated learning[C]//Proceedings of the 37th International Conference on Machine Learning. (PMLR), 2020. [11] ZHANG W, LU Q, YU Q, et al. Blockchain-based federated learning for device failure detection in industrial IoT[J]. IEEE Internet of Things Journal, 2021, 8(7):5926-5937. [12] LI Y, CHEN C, LIU N, et al. A blockchain-based decentralized federated learning framework with committee consensus[J]. IEEE Network, 202135(1):234-241. [13] XU Y, LU Z, GAI K, et al. BESIFL:Blockchain empowered secure and incentive federated learning paradigm in IoT[J]. IEEE Internet Things Journal, 2023, 10(8):6561-6573. [14] LIU Y, PENG J, KANG J, et al. A secure federated learning framework for 5G networks[J]. IEEE Wireless Communications, 2020, 27(4):24-31. [15] KANG J, XIONG Z, NIYATO D, et al. Incentive mechanism for reliable federated learning:A joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019, 6(6):10700-10714. [16] FENG S, NIYATO D, WANG P, et al. Joint service pricing and cooperative relay communication for federated learning[C]//iThings/GreenCom/CPSCom/SmartData, 2019:815-820. [17] LI Q, HE B, SONG D. Model-Contrastive federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021:10713-10722. [18] ZHANG Y, SCHAAR M. Reputation-based incentive protocols in crowdsourcing applications[C]//2012 Proceedings IEEE INFOCOM, 2012:2140-2148. [19] GILAD Y, HEMO R, MICALI S, et al. Algorand:Scaling Byzantine agreements for cryptocurrencies[C]//Proc ACM Symp Oper Syst Principles (SOSP), 2017:51-68. [20] 陈晓磊,徐小力,吴国新. 物联网架构下风力发电机组远程状态监测系统设计[J]. 风机技术, 2013(1):63-66, 88. CHEN Xiaolei, XU Xiaoli, WU Guoxin. Design of Internet of Thing structured remote condition monitoring system for wind turbines[J]. Chinese Journal of Turbomachinery Chinese Journal of Turbomachinery, 2013(1):63-66, 88. [21] LI T, ZHOU Z, LI S, et al. The emerging graph neural networks for intelligent fault diagnostics and prognostics:A guideline and a benchmark study[J]. Mechanical Systems and Signal Processing, 2022, 168:108653. [22] YUROCHKIN M, AGARWAL M, GHOSH S, et al. Bayesian nonparametric federated learning of neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, (PMLR), 2019, 97:7252-7261. |