机械工程学报 ›› 2023, Vol. 59 ›› Issue (21): 15-33.doi: 10.3901/JME.2023.21.015
朱子俊, 朱祥龙, 董志刚, 康仁科, 鲍岩
收稿日期:
2023-02-20
修回日期:
2023-07-11
出版日期:
2023-11-05
发布日期:
2024-01-15
通讯作者:
康仁科(通信作者),男,1962年出生,博士,教授,博士研究生导师。主要研究方向为超精密与特种加工技术、难加工材料高效加工技术、计算机辅助设计与制造技术。E-mail:kangrk@dlut.edu.cn
作者简介:
朱子俊,女,1995年出生,博士研究生。主要研究方向为磨削颤振检测与控制。E-mail:zhuzj@mail.dlut.edu.cn
基金资助:
ZHU Zijun, ZHU Xianglong, DONG Zhigang, KANG Renke, BAO Yan
Received:
2023-02-20
Revised:
2023-07-11
Online:
2023-11-05
Published:
2024-01-15
摘要: 在磨削难加工材料制成或具有薄壁、大长径比、复杂曲面结构的零部件时,磨削系统颤振会直接影响零部件表面加工质量和轮廓精度,从而影响使用寿命。但是目前对磨削颤振系统产生机理,稳定性模型建立与分析的研究仍有不足。深入开展磨削加工过程中颤振稳定性研究对于提升加工质量、保障磨削系统稳定运行具有重要意义。围绕磨削颤振机理、磨削稳定性建模与求解方法和应用进行综述,首先分析磨削系统稳定性的主要影响因素,深入讨论颤振的成因和磨削系统动力学建模进展;然后,从频域、时域、实验等方面重点分析磨削稳定性模型的求解方法,比较并归纳各种求解方法的过程原理、研究现状与优缺点;最后总结稳定性分析应用方法与现状,并对磨削加工颤振稳定性研究未来的发展方向进行展望。
中图分类号:
朱子俊, 朱祥龙, 董志刚, 康仁科, 鲍岩. 磨削加工颤振稳定性研究综述[J]. 机械工程学报, 2023, 59(21): 15-33.
ZHU Zijun, ZHU Xianglong, DONG Zhigang, KANG Renke, BAO Yan. A Review of Research on Chatter Stability of Grinding Processes[J]. Journal of Mechanical Engineering, 2023, 59(21): 15-33.
[1] LEE C W, CHOI T, SHIN Y C. Intelligent model-based optimization of the surface grinding process for heat-treated 4140 steel alloys with aluminum oxide grinding wheels[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2003, 125(1):65-76. [2] MALKIN S, GUO C. Grinding technology:Theory and applications of machining with abrasives[M]. New York:Industrial Press Inc, 2008. [3] 郭东明. 高性能制造[J]. 机械工程学报, 2022, 58(21):225-242. GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21):225-242. [4] 张冬青,李正洲,邓维鑫,等. 基于飞/发一体化的Ma=8~10飞行器任务性能快速评估与分析[J]. 航空动力学报, 2022, 37(5):1054-1063. ZHANG Dongqing, LI Zhengzhou, DENG Weixin, et al. Fast evaluation and analysis of Ma=8~10 vehicle mission performance based on vehicle and engine integration[J]. Journal of Aerospace Power, 2022, 37(5):1054-1063. [5] 汪奎,辛宏伟,徐宏,等. 空间相机快速反射镜的结构轻量化设计[J]. 红外与激光工程, 2019, 48(4):177-183. WANG Kui, XIN Hongwei, XU Hong, et al. Lightweight design of fast steering mirror for space cameras[J]. Infrared and Laser Engineering, 2019, 48(4):177-183. [6] 王志学,刘献礼,李茂月,等. 考虑力致变形影响的薄壁件铣削多点接触稳定性预测[J]. 机械工程学报, 2022, 58(17):309-320. WANG Zhixue, LIU Xianli, LI Maoyue, et al. Multi-point contact stability prediction considering force-induced deformation effect in milling thin-walled parts[J]. Journal of Mechanical Engineering, 2022, 58(17):309-320. [7] 张月星,李强. 浅谈火炮身管加工工艺[J]. 装备制造技术, 2014, 230(2):241-242. ZHANG Yuexing, LI Qiang. A brief discussion on the processing technology of artillery barrel[J]. Equipment Manufacturing Technology, 2014, 230(2):241-242. [8] 韩子瑶,胡文杰,谭建国. 年轻患者磨牙残根牙冠延长术后桩核冠修复长期观察(附1 例报告)[J]. 中国实用口腔科杂志, 2018, 11(10):578-582. HAN Ziyao, HU Wenjie, TAN Jianguo. Long-term observation on the post-and-core crown restoration after crown lengthening surgery of molar residual root in young patients-a case analysis[J]. Chinese Journal of Practical Stomatology, 2018, 11(10):578-582. [9] 雷小宝,廖文和,张霖,等. 磨牙牙冠的模型重构与CAM工艺[J]. 华南理工大学学报, 2010, 38(5):116-121. LEI Xiaobao, LIAO Wenhe, ZHANG Lin, et al. Model reconstruction and cam process of molar crown[J]. Journal of South China University of Technology, 2010, 38(5):116-121. [10] 曹强. CBN磨头加工钴基高温合金薄壁件的工艺实验研究[D]. 沈阳:东北大学, 2018. CAO Qiang. Research on process experimental of CBN grinding head processing cobalt-based superalloy thin-walled parts[D]. Shenyang:Northeastern University, 2018. [11] INASAKI I, KARPUSCHEWSKI B, LEE H S. Grinding chatter-origin and suppression[J]. CIRP AnnalsManufacturing Technology, 2001, 50(2):515-534. [12] ALTINTAS Y, WECK M. Chatter stability of metal cutting and grinding[J]. CIRP Annals-Manufacturing Technology, 2004, 53(2):619-642. [13] SRINIVASAN K. Application of the regeneration spectrum method to wheel regenerative chatter in grinding[J]. Journal of Engineering for Industry-Transactions of the ASME, 1982, 104(1):46-54. [14] CHEN X, GRIFFIN J. Grinding burn and chatter classification using genetic programming[C]//Advances in Abrasive Technology XI. Germany:Trans Tech Publications Ltd, 2009:90-95. [15] 李立,徐燕申,沈明,等. M7475B型磨床工艺参数对加工稳定性影响的研究[J]. 磨床与磨削, 1990(2):22-25. LI Li, XU Yanshen, SHEN Ming, et al. Study on the effect of process parameters on machining stability on M7475B type grinding machine[J]. Precise Manufacturing & Automation, 1990(2):22-25. [16] STEGIĆ M, VRANKOVIĆ N, RASTIJA M, et al. Comparative stability analysis of chatter in grinding process[C]//Advances in Mechanism and Machine Science:Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science 15. Poland:Springer International Publishing, 2019:4025-4032. [17] TÓTH M, SIMS N D, CURTIS D. An analytical study of wheel regeneration in surface grinding[J]. Procedia CIRP, 2019, 82:214-219. [18] WANG C C, ZHUO X X, ZHU Y Q. Optimization analysis of vibration for grinder spindle[J]. Sensors and Materials, 2020, 32(1):407-416. [19] TÓTH M, SIMS N D, CURTIS D. An alternative wheel regenerative mechanism in surface grinding:Distributed grit dullness captured by specific energy waves[J]. Mechanical Systems and Signal Processing, 2022, 162:107964. [20] BARJAŠIĆ D, STEGIĆ M, JURAN M. Numerical evaluation of plane grinding stability[J]. Transactions of FAMENA, 2023, 47(1):13-20. [21] MASUDA Y, KAWAHARA T, MURAKAMI S. Estimation model creating device for grinding wheel surface condition estimation, grinding wheel surface condition estimating device, adjustment model creating device for grinding machine operation command data adjustment, and updating device for grinding machine operation command data update:USA 0030939[P]. 2020-01-30. [22] KAWAHARA T, MASUDA Y, MURAKAMI S. Learning model generation device for supporting machine tool, support device for machine tool and machine tool system:USA 0133246[P]. 2020-04-30. [23] CHEN H G, SHEN J Y, CHEN W H, et al. Grinding chatter detection and identification based on BEMD and LSSVM[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1):80-92. [24] WANG L M, PAN J L, SHAO Y M, et al. Two new kurtosis-based similarity evaluation indicators for grinding chatter diagnosis under non-stationary working conditions[J]. Measurement, 2021, 176:109215. [25] HE D, NI Z X, WANG X F. Online grinding chatter detection based on minimum entropy deconvolution and autocorrelation function[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(9-10):6175-6185. [26] LIU T, DENG Z H, LUO C Y, et al. Chatter detection in camshaft high-speed grinding process based on VMD parametric optimization[J]. Measurement, 2022, 187:110133. [27] 孙浩,张兵,唐琦,等. 弹性轴磨削颤振检测与颗粒阻尼减振研究[J]. 航空制造技术, 2021, 64(18):14-20. SUN Hao, ZHANG Bing, TANG Qi, et al. Research on chatter detection and particle damping of elastic shaft face grinding[J]. Aeronautical Manufacturing Technology, 2021, 64(18):14-20. [28] 廖金鑫. 一种轴承套圈磨削振纹的机器视觉检测系统和方法:中国, 110618140[P]. 2019-12-27. LIAO Jinxin. Machine vision detection system and method for grinding chatter of bearing bush:China, 110618140[P]. 2019-12-27. [29] YANG D, CHEN T D, LI H, et al. Analysis of regenerative chatter in roll grinding process with duffing oscillator and its suppression[C]//20207th International Conference on Information Science and Control Engineering (ICISCE). China, 2020:1673-1677. [30] 芦华,迟玉伦,戴顺达,等. 一种外圆磨削颤振通用模型与稳定性分析方法:113761678[P]. 2021-12-07. LU Hua, CHI Yulun, DAI Shunda, et al. A general model and stability analysis method for external cylindrical grinding chatter:113761678[P]. 2021-12-07. [31] 韩贤国. 基于三维移动载荷理论的细长轴工件加工过程振动研究[D]. 大连:大连理工大学, 2013. HAN Xianguo. Vibration analysis of a rotating long slender workpiece in machining processes based on the theory of three-dimensional moving load[D]. Dalian:Dalian University of Technology, 2013. [32] LI H Q, SHIN Y C. A time-domain dynamic model for chatter prediction of cylindrical plunge grinding processes[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2006, 128(2):404-415. [33] HAHN R S. On the theory of regenerative chatter in precision-grinding operations[J]. Transactions of the ASME, 1954, 76(4):593-597. [34] GURNEY J P. An analysis of surface wave instability in grinding[J]. Journal of Mechanical Engineering Science, 1965, 7(2):198-209. [35] THOMPSON R A. The dynamic behavior of surface grinding part 1-A mathematical treatment of surface grinding[J]. Journal of Engineering for Industry, 1971, 93(2):485-491. [36] EI-WARDANI T, SADEK M M, YOUNIS M A. Theoretical analysis of grinding chatter[J]. Journal of Engineering for Industry, 1987, 109(4):314-320. [37] CHUNG K W, LIU Z H. Nonlinear analysis of chatter vibration in a cylindrical transverse grinding process with two time delays using a nonlinear time transformation method[J]. Nonlinear Dynamics, 2011, 66(4):441-456. [38] YAN Y, XU J. Stability analysis of a transverse cylindrical grinding process[C]//Advanced Materials Research. Germany:Trans Tech Publications Ltd, 2012:1190-1193. [39] YAN Y, XU J, WANG W Y. Nonlinear chatter with large amplitude in a cylindrical plunge grinding process[J]. Nonlinear Dynamics, 2012, 69(4):1781-1793. [40] YAN Y, XU J, WIERCIGROCH M. Non-linear analysis and quench control of chatter in plunge grinding[J]. International Journal of Non-Linear Mechanics, 2015, 70:134-144. [41] SUN C, LIU Z X, LAN D X, et al. Study on the influence of the grinding chatter on the workpiece's microstructure transformation[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(9):3861-3879. [42] 王冬生,段有明,杨立洁,等. 新型陶瓷托辊专用磨床磨削颤振稳定性分析[J]. 机床与液压, 2019, 47(20):130-133. WANG Dongsheng, DUAN Youming, YANG Lijie, et al. Analysis of grinding chatter stability for special grinding machine for ceramic idler[J]. Machine Tool & Hydraulics, 2019, 47(20):130-133. [43] 刘涛,邓朝晖,罗程耀,等. 基于动态磨削深度的非圆轮廓高速磨削稳定性建模与分析[J]. 机械工程学报, 2021, 57(15):264-274. LIU Tao, DENG Zhaohui, LUO Chengyao, et al. Stability modeling and analysis of non-circular high-speed grinding with consideration of dynamic grinding depth[J]. Journal of Mechanical Engineering, 2021, 57(15):264-274. [44] 董新峰,张为民,姜源. 基于EMD复杂度与鉴别信息的磨削颤振预测[J]. 振动.测试与诊断, 2012, 32(4):602-607, 689. DONG Xinfeng, ZHANG Weimin, JIANG Yuan. Method of grinding chatter predicting based on complexity of EMD and discrimination information[J]. Journal of Vibration. Measurement & Diagnosis, 2012, 32(4):602-607, 689. [45] 孙聪,姚云龙,修世超,等. 预应力条件下系统颤振对磨削工件表面形貌的影响研究[J]. 表面技术, 2020, 49(1):326-335. SUN Cong, YAO Yunlong, XIU Shichao, et al. Influences of system chatter on the ground workpiece's surface topography under prestress condition[J]. Surface Technology, 2020, 49(1):326-335. [46] YAN Y, XU J, WIERCIGROCH M. Regenerative chatter in a plunge grinding process with workpiece imbalance[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9):2845-2862. [47] YUAN L H, KESKINEN E, JARVENPAA V M. Stability analysis of roll grinding system with double time delay effects[C]//IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures. Germany:Springer Verlag, 2005:375-387. [48] THOMPSON R A. On the doubly regenerative stability of a grinder:The theory of chatter growth[J]. Engineering for Industry, 1986, 108(2):75-82. [49] YUAN L H, JRVENP V M, KESKINEN E. Simulation of roll grinding system with double regenerative chatter[C]//Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis-2004. UK and Northern Ireland:American Society of Mechanical Engineers, 2004:121-127. [50] SHIAU T N, HUANG K H, WANG F C, et al. Dynamic response of a rotating ball screw subject to a moving regenerative force in grinding[J]. Applied Mathematical Modelling, 2010, 34(7):1721-1731. [51] LI H Q, SHIN Y C. Wheel regenerative chatter of surface grinding[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2006, 128(2):393-403. [52] YAN Y, XU J, WIERCIGROCH M. Chatter in a transverse grinding process[J]. Journal of Sound and Vibration, 2014, 333(3):937-953. [53] YAN Y, XU J, WIERCIGROCH M. Stability and dynamics of parallel plunge grinding[J]. International Journal of Advanced Manufacturing Technology, 2018, 99(1):881-895. [54] SUBRAHMANYA N, SHIN Y C. Automated sensor selection and fusion for monitoring and diagnostics of plunge grinding[J]. Journal of Manufacturing Science and Engineering, 2008, 130(3):876-877. [55] CHEN X, ROWE W B, LI Y, et al. Grinding vibration detection using a neural network[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 1996, 210(4):349-352. [56] BADGER J, MURPHY S, O'DONNELL G. The effect of wheel eccentricity and run-out on grinding forces, waviness, wheel wear and chatter[J]. International Journal of Machine Tools & Manufacture, 2011, 51(10):766-774. [57] BIERMANN D, FELDHOFF M. Influence of controlled tool orientation on pattern formation and waviness in surface grinding[J]. Production Engineering Munich Then Berlin, 2011, 5(1):31-36. [58] SNOEYS R, BROWN D. Dominating parameters in grinding wheel and workpiece regenerative chatter[J]. Advances in Machine Tool Design and Research, 1970:325-348. [59] PAWŁOWSKI W. Dynamic model of oscillation-assisted cylindrical plunge grinding with chatter[J]. Journal of Manufacturing Science and Engineering, 2013, 135(5):051010. [60] MATHEW N T, VIJAYARAGHAVAN L. Wear of silicon carbide wheel during grinding of intermetallic titanium aluminide[J]. International Journal of Machining and Machinability of Materials, 2020, 22(2):122-136. [61] THOMPSON R A. Character of regenerative chatter in cylindrical grinding[J]. Journal of Engineering for Industry-Transactions of the ASME, 1973, 95(3):858-864. [62] HAHN R S, LINDSAY R P. The influence of process variables on material removal, surface integrity, surface finish and vibration in grinding[J]. Advances in Machine Tool Design and Research, 1970, 10:95-117. [63] LIU Z H, PAYRE G. Stability analysis of doubly regenerative cylindrical grinding process[J]. Journal of Sound and Vibration, 2007, 301(3-5):950-962. [64] 丁文祥. 静压轴承内孔切入式磨削的成圆过渡过程及其规律研究[D]. 长沙:湖南大学, 2020. DING Wenxiang. Study on the rounding transition process and roundness variation in hydrostatic bearing inner bore plunge grinding[D]. Changsha:Hunan University, 2020. [65] ALFARES M, ELSHARKAWY A. Effect of grinding forces on the vibration of grinding machine spindle system[J]. International Journal of Machine Tools & Manufacture, 2000, 40(14):2003-2030. [66] 高成. 基于硬脆材料端面轴向进给的磨削力建模与实验分析研究[D]. 温州:温州大学, 2020. GAO Cheng. Grinding force modeling and experimental analysis based on axial feed grinding of hard and brittle materials[D]. Wenzhou:Wenzhou University, 2020. [67] JANIK W, FUCHS A. Process- and signal-model based fault detection of the grinding process[J]. IFAC Proceedings Volumes, 1991, 24(6):559-564. [68] HAZEL B, RAFIEIAN F, LIU Zhaoheng. Impact-cutting and regenerative chatter in robotic grinding[C]//ASME International Mechanical Engineering Congress and Exposition. UK and Northern Ireland:American Society of Mechanical Engineers, 2011:349-359. [69] CHEN Y, HUANG G Q. Development and research on the dynamics simulation system for surface grinding process with diamond wheel[C]//12th Conference on Machining and Advanced Manufacturing Technology. Germany:Trans Tech Publications Ltd, 2014:658-664. [70] RAMOS J C, VINOLAS J, NIETO F J. A simplified methodology to determine the cutting stiffness and the contact stiffness in the plunge grinding process[J]. International Journal of Machine Tools & Manufacture, 2001, 41(1):33-49. [71] AHN Y, KIM D H, CHOI S H, et al. Effects of stiffness and damping coefficients of the spindle bearing on the dynamics of the cylindrical plunge grinding process[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2001, 215(12):1711-1718. [72] CHA K C, WANG N, LIAO J Y. Stability analysis for the crankshaft grinding machine subjected to a variable-position worktable[J]. International Journal of Advanced Manufacturing Technology, 2013, 67(1):501-516. [73] 徐磊,赵丽梅,余炯. 高液静压无心磨床磨削过程再生颤振的稳定性分析[J]. 组合机床与自动化加工技术, 2021, 63(10):52-55, 60. XU Lei, ZHAO Limei, YU Jiong. Stability analysis of regenerative chatter in high hydrostatic centerless grinding machine[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021, 63(10):52-55, 60. [74] HUANG Y, HE S, XIAO G J, et al. Effects research on theoretical-modelling based suppression of the contact flutter in blisk belt grinding[J]. Journal of Manufacturing Processes, 2020, 54:309-317. [75] 余炯. 无心磨床砂轮主轴轴承油膜刚度对颤振的影响及减振控制方法研究[D]. 贵阳:贵阳大学, 2021. YU Jiong. Research on the effect of oil film stiffness of centerless grinder grinding wheel spindle bearing on chattering and vibration reduction control method[D]. Guiyang:Guiyang University, 2021. [76] 王利明,袁意林,邵毅敏,等. 二十辊轧机轧辊磨床砂轮动不平衡对磨削颤振的影响[J]. 工程科学学报, 2015(S1):78-83. WANG Liming, YUAN Yilin, SHAO Yimin, et al. Chatter analysis about roll grinder of twenty-high rolling mill in grinding process with grinding wheel dynamic imbalance fault[J]. Chinese Journal of Engineering, 2015(S1):78-83. [77] 迟玉伦,李郝林. 切入式外圆磨削接触刚度与固有频率研究[J]. 中国机械工程, 2016, 27(10):1294-1298, 1326. CHI Yulun, LI Haolin. Study on contact stiffness and natural frequency in cylindrical plunge grinding[J]. China Mechanical Engineering, 2016, 27(10):1294-1298, 1326. [78] YAN Y, XU J, WIERCIGROCH M. Regenerative and frictional chatter in plunge grinding[J]. Nonlinear Dynamics, 2016, 86(1):283-307. [79] JALILI M M, FAZEL R, ABOOTORABI M M. Simulation of chatter in plunge grinding process with structural and cutting force nonlinearities[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9):2863-2881. [80] XIONG W L, DING W X, CHEN J H, et al. A novel double rotor coupling model for inner bore grinding process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(7):3357-3366. [81] 杨铎,陈添定,李鹤,等. 基于非线性磨削模型的稳态与颤振抑制的研究[J]. 机床与液压, 2022, 50(10):41-45. YANG Duo, CHEN Tianding, LI He, et al. Research of stability and chatter suppression based on nonlinear grinding model[J]. Machine Tool & Hydraulics, 2022, 50(10):41-45. [82] YANG D, CHEN T D, RAO C F. A study on bistability analysis and chatter suppression for roll grinding process[J]. Journal of Applied Science and Engineering, 2022, 25(1):375-384. [83] 吴建,张甲甲,郭坤,等. 镍基高温合金叶片叶尖磨削砂轮系统加工稳定性研究[J]. 工具技术, 2021, 55(3):20-25. WU Jian, ZHANG Jiajia, GUO Kun, et al. Study on machining stability of wheel system for grinding Ni-base superalloy blade tip[J]. Tool Engineering, 2021, 55(3):20-25. [84] 徐燕申,李刚. 磨削颤振频域特征及其机理的研究[J]. 振动工程学报, 1992, 5(3):268-275. XU Yanshen, LI Gang. Study of the frequency domain characteristics of grinding chatter and its mechanism[J]. Journal of Vibration Engineering, 1992, 5(3):268-275. [85] BAYLIS R J, STONE B J. The effect of grinding wheel flexibility on chatter[J]. CIRP Annals-Manufacturing Technology, 1999, 38(1):307-310. [86] HESTERMAN D, STONE B. Improved model of chatter in grinding, including torsional effects[J]. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2002, 216(2):169-180. [87] 谭绍东,迟玉伦,徐家晴. 螺母内圆磨削工艺优化及颤振影响分析研究[J]. 精密制造与自动化, 2020(3):5-8, 13. TAN Shaodong, CHI Yulun, XU Jiaqing. Study on optimization of internal grinding process of nuts and analysis of chattering influence[J]. Precise Manufacturing & Automation, 2020(3):5-8, 13. [88] LIU Y, WANG X F, LIN J, et al. An adaptive grinding chatter detection method considering the chatter frequency shift characteristic[J]. Mechanical Systems and Signal Processing, 2020, 142:106672. [89] GUO M X, LI B Z. A frequency-domain grinding force model-based approach to evaluate the dynamic performance of high-speed grinding machine tools[J]. Machining Science and Technology, 2016, 20(1):115-131. [90] GUO M X, JIANG X H, DING Z S, et al. A frequency domain dynamic response approach to optimize the dynamic performance of grinding machine spindles[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98:2737-2745. [91] XIAN C, SHI Y Y, LIN X J, et al. Study on vibration characteristics of polishing rod for polishing aeroengine blade with abrasive cloth wheel[J]. Mathematical Problems in Engineering, 2020, 2020:1-14. [92] 张氢,陈文韬,陈淼,等. 数控凸轮轴磨床颤振稳定性研究[J]. 湖南大学学报, 2020, 47(2):45-52. ZHANG Qing, CHEN Wentao, CHEN Miao, et al. Study on cutting chatter stability of a computerized numerical control camshaft grinder[J]. Journal of Hunan University, 2020, 47(2):45-52. [93] LIAO Y S, SHIANG L C. Computer simulation of self-excited and forced vibrations in the external cylindrical plunge grinding process[J]. Journal of Engineering for Industry-Transactions of the ASME, 1991, 113(3):297-304. [94] BIERA J, VINOLAS J, NIETO F J. Time-domain dynamic modelling of the external plunge grinding process[J]. International Journal of Machine Tools & Manufacture, 1997, 37(11):1555-1572. [95] BRECHER C, HANNIG S. Simulation of plunge centerless grinding processes[J]. Production Engineering, 2008, 2(1):91-95. [96] LEONESIO M, PARENTI P, CASSINARI A, et al. A time-domain surface grinding model for dynamic simulation[J]. 3rd CIRP Conference on Process Machine Interactions, 2012, 4(1):166-171. [97] ALVAREZ J, BARRENETXEA D, MARQUINEZ J I, et al. Effectiveness of continuous workpiece speed variation(CWSV)for chatter avoidance in through feed centerless grinding[J]. International Journal of Machine Tools & Manufacture, 2011, 51(12):911-917. [98] BARRENETXEA D, ALVAREZ J, MARQUINEZ J I, et al. Stability analysis and optimization algorithms for the set-up of infeed centerless grinding[J]. International Journal of Machine Tools & Manufacture, 2014, 84:17-32. [99] BARRENETXEA D, MARQUINEZ J I, BEDIAGA I, et al. Continuous workpiece speed variation(CWSV):Model based practical application to avoid chatter in grinding[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1):319-322. [100] ALVAREZ J, ZATARAIN M, BARRENETXEA D, et al. Implicit subspace iteration to improve the stability analysis in grinding processes[J]. Applied Sciences-Basel, 2020, 10(22):8203. [101] LI Y, ZHOU S P, LIN J, et al. Regenerative chatter identification in grinding using instantaneous nonlinearity indicator of servomotor current signal[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(1):779-790. [102] 吴兵. 基于EMD-HT-SVM的磨床振动故障监测方法研究[J]. 机械设计与制造工程, 2020, 49(9):107-111. WU Bing. Research on EMD-HT-SVM-based vibration fault monitoring method for grinding machines[J]. Machine Design and Manufacturing Engineering, 2020, 49(9):107-111. [103] LIU G J, WANG Q, SHI X L, et al. Study on self-configuration method of neural network model for grinding troubles on-line monitoring[C]//Advances in Grinding and Abrasive Technology XIV. Germany:Trans Tech Publications Ltd, 2008:199-203. [104] LOPES W N, THOMAZELLA R, ALEXANDRE F A, et al. Monitoring of self-excited vibration in grinding process using time-frequency analysis of acceleration signals[C]//13th IEEE International Conference on Industry Applications. United States:Institute of Electrical and Electronics Engineers Inc, 2018:659-663. [105] 朱欢欢,李厚佳,张梦梦,等. 基于BP神经网络的外圆磨削颤振在线识别和监测方法[J]. 金刚石与磨料磨具工程, 2022, 42(1):104-111. ZHU Huanhuan, LI Houjia, ZHANG Mengmeng, et al. On-line identification and monitoring method for external grinding flutter based on BP neural network[J]. Diamond & Abrasives Engineering, 2022, 42(1):104-111. [106] LEI Y, BAI Y, XU Z J. Sensor-based inspection of the formation accuracy in ultra-precision grinding (UPG) of aspheric surface considering the chatter vibration[J]. Photonic Sensors, 2018, 8(2):97-102. [107] TANGJITSITCHAROEN S, SENJUNTICHAI A. In-process chatter detection in surface grinding[C]//4th International Conference on Advances in Mechanics Engineering. France:EDP Sciences, 2015. [108] LI Y, GRACEWSKI S M, FUNKENBUSCH P D, et al. Analysis of chatter in contour grinding of optical materials[J]. International Journal of Machine Tools & Manufacture, 2002, 42(10):1095-1103. [109] JIANG Y X, DENG S P, QI Y M, et al. The machining parameters online monitoring method for stability prediction[C]//Functional Manufacturing and Mechanical Dynamics II. Germany:Trans Tech Publications, 2012:559-563. [110] YU A B, DONG L, WANG Y L. Effect of wheel elasticity on grinding stability[C]//International Conference on Engineering Design and Optimization. Germany:Trans Tech Publications, 2010:394-397. [111] 杨淮文,冯伟,朱建辉,等. CFRP砂轮与钢基体砂轮高速磨削过程中的动力学特性[J]. 金刚石与磨料磨具工程, 2021, 41(5):52-58. YANG Huaiwen, FENG Wei, ZHU Jianhui, et al. Dynamic characteristics of high speed grinding process of CFRP wheel and steel based wheel[J]. Diamond &Abrasives Engineering, 2021, 41(5):52-58. [112] WANG C C, ZHUO X X, ZHU Y Q. Optimization analysis of vibration for grinder spindle[J]. Sensors and Materials, 2020, 32(1):407-416. [113] 尹龙, 赵波, 郭星 晨, 等. 超声 辅助 内圆 磨削 40Cr15Mo2VN轴承套圈的试验研究[J]. 中国机械工程, 2021, 32(10):1172-1180. YIN Long, ZHAO Bo, GUO Xingchen, et al. Experimental research on uitrasonic assisted internal grinding of 40Cr15Mo2VN bearing rings[J]. China Mechanical Engineering, 2021, 32(10):1172-1180. [114] HASHIMOTO F, ZHOU S S, LAHOTI G D, et al. Stability diagram for chatter free centerless grinding and its application in machine development[J]. CIRP Annals 2000:Manufacturing Technology, 2000, 49(1):225-230. [115] LI H Q, SHIN Y C. A time domain dynamic simulation model for stability prediction of infeed centerless grinding processes[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2007, 129(3):539-550. |
[1] | 苏志朋, 梁志强, 李娟, 王飞, 魏正义, 刘月红, 金惟薇, 马悦, 殷振, 王西彬. 钛合金微槽超声螺线辅助铣磨加工试验研究[J]. 机械工程学报, 2024, 60(9): 5-12. |
[2] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[3] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[4] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[5] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[6] | 王晓铭, 李长河, 杨敏, 张彦彬, 刘明政, 高腾, 崔歆, 王大中, 曹华军, 陈云, 刘波. 纳米生物润滑剂微量润滑加工物理机制研究进展[J]. 机械工程学报, 2024, 60(9): 286-322. |
[7] | 崔歆, 李长河, 张彦彬, 杨敏, 周宗明, 刘波, 王春锦. 磁力牵引纳米润滑剂微量润滑磨削力模型与验证[J]. 机械工程学报, 2024, 60(9): 323-337. |
[8] | 关集俱, 祝正兵, 徐正亚, 栾志强, 许雪峰. CNTs@T321微囊制备的纳米流体与砂轮磨削时的双重润滑增效机制[J]. 机械工程学报, 2024, 60(9): 351-363. |
[9] | 何喆, 黄新春, 宋艺辉, 史耀耀, 张兆顷, 史恺宁. 服役温度影响的DD6单晶高温合金磨削/喷丸加工表面完整性演化规律研究[J]. 机械工程学报, 2024, 60(9): 410-420. |
[10] | 张俊, 吴成阳, 方汉良, 孙载超, 王凯龙, 汤腾飞. Z4型冗余驱动并联操作器的驱动特性研究[J]. 机械工程学报, 2024, 60(7): 66-78. |
[11] | 商德勇, 黄欣怡, 黄云山, 张天佑. 基于Kane方程的Delta并联机器人刚柔耦合动力学研究[J]. 机械工程学报, 2024, 60(7): 124-133. |
[12] | 丁文锋, 赵俊帅, 张洪港, 赵彪, 司文元, 宋强, 黄庆飞. 齿轮高效精密磨削加工及表面完整性控制技术研究进展[J]. 机械工程学报, 2024, 60(7): 350-373. |
[13] | 刘阔, 姜业明, 黄任杰, 李明禹, 陈虎, 王永青. 虑及颤振在线抑制的机床高效自适应加工技术研究[J]. 机械工程学报, 2024, 60(6): 104-113. |
[14] | 赫青山, 谢永晨, 崔仲鸣, 傅玉灿. 难加工材料绿色磨削用相变储热复合砂轮的研制[J]. 机械工程学报, 2024, 60(3): 405-414. |
[15] | 唐新姿, 李可翔, 何文双, 陈睿, 彭锐涛. 多工况风电叶片颤振相关性分析与气弹优化[J]. 机械工程学报, 2024, 60(20): 300-314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||