机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 198-214.doi: 10.3901/JME.2023.20.198
田少杰1, 刘雪峰1,2,3, 王文静2,3, 崔庆贺1, 郝健博1
收稿日期:
2023-06-29
修回日期:
2023-08-18
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
刘雪峰(通信作者),男,1970年出生,博士,教授,博士研究生导师。主要研究方向为高性能及难加工材料短流程高效制备加工新技术与理论研究。E-mail:liuxuefengbj@163.com
作者简介:
田少杰,男,1994年出生,博士研究生。主要研究方向为超声辅助塑性成形、金属层状复合材料制备加工。E-mail:tsj1433@163.com
基金资助:
TIAN Shaojie1, LIU Xuefeng1,2,3, WANG Wenjing2,3, CUI Qinghe1, HAO Jianbo1
Received:
2023-06-29
Revised:
2023-08-18
Online:
2023-10-20
Published:
2023-12-08
摘要: 超声辅助塑性成形技术具有降低成形载荷、改善接触状态并提高成形件质量等特点,是一种新兴的特种能场辅助塑性成形技术。在超声辅助塑性成形技术中,超声振动系统及其谐振设计理论和方法对成形件的质量有重要影响。本文综述了超声振动系统的谐振设计理论和方法及其应用研究现状,单激励一维、单激励多维、多激励一维和多激励多维等超声振动方式的超声振动系统研制现状,以及现有的超声辅助拉拔、超声辅助拉深、超声辅助挤压和超声辅助轧制等超声辅助塑性成形技术的原理和特点。指出了大负载工况、复杂结构和多维度等超声振动系统存在的系统稳定性差和极限工作状态预测精度低等问题,以及现有超声辅助塑性成形技术由于超声布置方式不合理、功率不足导致的超声能量损耗大、作用效果不明显等问题。最后,从人工智能等先进设计分析手段的应用、大功率超声振动系统的研制以及多激励耦合超声辅助塑性成形新技术的开发等方面展望了超声辅助塑性成形技术的发展方向。
中图分类号:
田少杰, 刘雪峰, 王文静, 崔庆贺, 郝健博. 超声振动系统的研究现状及其在塑性成形领域的应用进展[J]. 机械工程学报, 2023, 59(20): 198-214.
TIAN Shaojie, LIU Xuefeng, WANG Wenjing, CUI Qinghe, HAO Jianbo. Research Status of Ultrasonic Vibration System and Its Application Progress in Plastic Forming Field[J]. Journal of Mechanical Engineering, 2023, 59(20): 198-214.
[1] 张洪瑞,詹梅,郑泽邦,等. 航天大型薄壁回转曲面构件成形制造技术的发展与挑战[J]. 机械工程学报,2022,58(20):166-185. ZHANG Hongrui, ZHAN Mei, ZHENG Zebang,et al. Development and challenge of forming manufacturing technologies for aerospace large-scale thin-wall axisymmetric curved-surface components[J]. Journal of Mechanical Engineering,2022,58(20):166-185. [2] 牛勇,陆柏贤,黄伟,等. 塑性成形模具用硬质合金的研究进展[J]. 模具工业,2022,48(9):1-9. NIU Yong,LU Boxian,HUANG Wei,et al. Research progress of cemented carbide for plastic forming die[J]. Die & Mould Industry,2022,48(9):1-9. [3] 孟德安,朱成成,董渊哲,等. 振动辅助塑性成形工艺及机理的研究进展[J]. 锻压技术,2022,47(4):1-13. MENG Dean,ZHU Chengcheng,DONG Yuanzhe,et al. Research progress on vibration-assisted plastic forming process and mechanism[J]. Forging & Stamping Technology,2022,47(4):1-13. [4] 张海栋,邓磊,王新云,等. 振动辅助塑性成形机理及应用研究进展[J]. 航空制造技术,2020,63(16):22-31. ZHANG Haidong,DENG Lei,WANG Xinyun,et al. Research progress on mechanism and application of vibration assisted plastic forming[J]. Aeronautical Manufacturing Technology,2020,63(16):22-31. [5] 曹伯楠,孟宝,赵越超,等. 特种能场辅助微塑性成形技术研究及应用[J]. 精密成形工程,2019,11(3):14-27. CAO Bonan,MENG Bao,ZHAO Yuechao,et al. Research and application of energy field assisted microforming technology[J]. Journal of Netshape Forming Engineering,2019,11(3):14-27. [6] 仲崇凯,管延锦,姜良斌,等. 金属超声振动塑性成形技术研究现状及其发展趋势[J]. 精密成形工程,2015(1):9-15. ZHONG Chongkai,GUAN Yanjin,JIANG Liangbin,et al. Research status and development tendency of ultrasonic-vibration assisted metal plastic forming[J]. Journal of Netshape Forming Engineering,2015(1):9-15. [7] ZHAI Jiqiang,GUAN Yanjin,LI Yi,et al. The surface effect of ultrasonic vibration in double cup extrusion test[J]. Journal of Materials Processing Technology,2022,299:117344. [8] IBRAHIM R,BATEMAN R,CHENG K,et al. Design and analysis of a desktop micro-machine for vibration assisted micromachining[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2011,225(8):1377-1391. [9] LIN Shuyu,XU Long,HU Wenxu. A new type of high power composite ultrasonic transducer[J]. Journal of Sound & Vibration,2011,330(7):1419-1431. [10] SUZUKI N,HARITANI M,YANG J,et al. Elliptical vibration cutting of tungsten alloy molds for optical glass parts[J]. CIRP Annals,2007,56(1):127-130. [11] 应崇福,范国良. 超声复合振动系统中的“局部共振”现象─20年来的应用和机理分析情况[J]. 应用声学,2002(1):19-25. YING Chongfu,FAN Guoliang. The phenomenon of “local resonance” in compound ultrasonic vibration systems-Applications and mechanism analyses during the 20 years after its discovery[J]. Applied Acoustics,2002(1):19-25. [12] 林书玉,鲜小军. 功率超声换能振动系统的优化设计及其研究进展[J]. 陕西师范大学学报(自然科学版),2014,42(6):31-39. LING Shuyu,XIAN Xiaojun. Progress and optimization design of high power piezoelectric ceramic ultrasonic vibrating system[J]. Journal of Shaanxi Normal University(Natural Science Edition),2014,42(6):31-39. [13] 吕明,王时英,轧刚. 超声珩齿弯曲振动变幅器的位移特性[J]. 机械工程学报,2008(7):106-111. LÜ Ming,WANG Shiying,ZHA Gang. Displacement characteristics of transverse vibratory disc transformer in ultrasonic gear honing[J]. Journal of Mechanical Engineering,2008(7):106-111. [14] SILGE M,SATTEL T. Design of contactlessly powered and piezoelectrically actuated tools for non-resonant vibration assisted milling[J]. Actuators,2018,7(2):19. [15] ZHAO Bo,BIE Wenbo,WANG Xiaobo,et al. The effects of thermo-mechanical load on the vibrational characteristics of ultrasonic vibration system[J]. Ultrasonics,2019,98:7-14. [16] 赵波,别文博,王晓博,等. 基于局部共振理论的超声加工技术研究进展[J]. 航空制造技术,2018,61(21):40-46. ZHAO Bo,BIE Wenbo,WANG Xiaobo,et al. Development of ultrasonic-assisted machining based on local resonance[J]. Aeronautical Manufacturing Technology,2018,61(21):40-46. [17] 赵继,王立江,孟继安. 超声振动切削系统中弯曲振动刀杆的谐振模式[J]. 声学学报,1992(1):22-29. ZHAO Ji,WANG Lijiang,MENG Jian. The resonance pattern of cutter bar in ultrasonic vibration cutting system[J]. Acta Acustica,1992(1):22-29. [18] 王得胜,李智. 超声珩磨装置振动子系统的振动特性研究[J]. 河南理工大学学报(自然科学版),2015,34(2):226-230. WANG Desheng,LI Zhi. Research on characteristics of vibration subsystem in ultrasonic honing device[J]. Journal of Henan Polytechnic University(Natural Science),2015,34(2):226-230. [19] 郑建新,徐家文,刘传绍,等. 超声加工中局部共振机理的模拟试验研究[J]. 南京航空航天大学学报,2006,38(5):644-648. ZHENG Jianxing,XU Jiawen,LIU Chuanshao,et al. Research on simulation test of local resonance mechanism in ultrasonic machining[J]. Journal of Nanjing University of Aeronautics & Astronautics,2006,38(5):644-648. [20] 王艳东,王敏慧,鲍善惠. 超声扭转振动系统局部共振的有限元仿真研究[J]. 陕西师范大学学报(自然科学版),2005,33(3):49-52. WANG Yandong,WANG Minhui,BAO Shanhui. A finite-element simulation study local resonance in torsional ultrasonic vibration systems[J]. Journal of Shaanxi Normal University(Natural Science Edition),2005,33(3):49-52. [21] 刘世清,丁大成,董彦武. 复合振动系统中“局部扭转共振”现象的研究[J]. 中南工学院学报,1995(1):1-6. LIU Shiqing,DING Dacheng,DONG Yanwu. The research of part-torsion resonance in complex vibration system[J]. Journal of Central-South Institute of Technology,1995(1):1-6. [22] 别文博,赵波,高国富,等. 切向超声振动辅助成形磨削齿轮的切削系数建模与试验研究[J]. 机械工程学报,2022,58(7):295-308. BIE Wenbo,ZHAO Bo,GAO Guofu,et al. Analytical Modeling and experimental investigation on cutting coefficient during tangential ultrasonic vibration-assisted forming grinding gear[J]. Journal of Mechanical Engineering,2022,58(7):295-308. [23] 郭星辰,赵波,尹龙,等. 基于局部共振理论的齿轮成形磨削纵弯谐振系统设计[J]. 振动与冲击,2021,40(18):15-24. GUO Xingchen,ZHAO Bo,YIN Long,et al. Design of a longitudinal bending resonance system for gear forming grinding based on the local resonance theory[J]. Journal of Vibration and Shock,2021,40(18):15-24. [24] 刘传绍,赵波,高国富. 超声珩磨声学系统局部共振条件的试验研究[J]. 金刚石与磨料磨具工程,2000(4):22-24. LIU Chuanshao,ZHAO Bo,GAO Guofu. Experimental research on local resonance condition of ultrasonic honing acoustic system[J]. Diamond & Abrasives Engineering,2000(4):22-24. [25] 赵文利. 单激励三维超声振动辅助加工装置设计与分析[D]. 天津:天津理工大学,2022. ZHAO Wenli. Design and analysis of auxiliary machining device with single excitation three dimensional ultrasonic vibration[D]. Tianjin:Tianjin University of Technology,2022. [26] YU Tianbiao,YANG Xiaozhe,AN Jiuhe,et al. Material removal mechanism of two-dimensional ultrasonic vibration assisted polishing Inconel 718 nickel-based alloy[J]. The International Journal of Advanced Manufacturing Technology,2018,96(1-4):657-667. [27] 丁文锋,曹洋,赵彪,等. 超声振动辅助磨削加工技术及装备研究的现状与展望[J]. 机械工程学报,2022,58(9):244-269. DING Wenfeng,CAO Yang,ZHAO Biao,et al. Research status and future prospects of ultrasonic vibration assisted grinding technology and equipment[J]. Journal of Mechanical Engineering,2022,58(9):244-269. [28] 张俊杰,刘英想,胡王杰,等. TC4钛合金纵弯超声振动铣削装置及其加工性能研究[J]. 航空制造技术,2022,65(8):14-21. ZHANG Junjie,LIU Yingxiang,HU Wangjie,et al. Study on longitudinal-bending hybrid ultrasonic vibration milling device and machining performance of TC4 titanium alloy[J]. Aeronautical Manufacturing Technology,2022,65(8):14-21. [29] 朱寅. 超声变幅杆有限元谐振分析[J]. 机械,2005(12):13-15. ZHU Yan. Resonant analysis of ultrasonic amplitude horn with finite element method[J]. Machinery,2005(12):13-15. [30] WANG D A,CHUANG W Y,HSU K,et al. Design of a bézier-profile horn for high displacement amplification[J]. Ultrasonics,2011,51(2):148-156. [31] RANI R M,RUDRAMOORTHY R. Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding[J]. Ultrasonics,2013,53(3):763-772. [32] NGUYEN H T,NGUYUE H D,UAN J Y,et al. A nonrational B-spline profiled horn with high displacement amplification for ultrasonic welding[J]. Ultrasonics,2014,54(8):2063-2071. [33] 阮世勋. 余弦型和类余弦型超声变幅杆的研究[J]. 声学技术,1997(1):23-26. RUAN Shixun. Study on ultrasonic transformers of longitudinal cosine type and torsional similar cosine type[J]. Technical Acoustics,1997(1):23-26. [34] BRINKSMEIER E,GLABE R. Elliptical vibration cutting steel with diamond tools[J]. Technical Acoustics,1999,3:12-33. [35] LI Xun,ZHANG Deyuan. Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting[J]. Journal of Materials Processing Technology,2006,180(1-3):91-95. [36] 喻栋. 钛合金TC4的单激励超声波椭圆振动切削系统的研究[D]. 哈尔滨:哈尔滨工业大学,2015. YU Dong. Research on single excitation ultrasonic elliptical vibration cutting system for titanium alloy TC4[D]. Harbin:Harbin Institute of Technology 2015. [37] 吴豪琼,高志强. 斜槽式单激励纵扭超声变幅杆设计[J]. 应用声学,2022,41(4):620-625. WU Haoqiong,GAO Zhiqiang. The design of multiple diagonal slits ultrasonic horn with single-excitation longitudinal-torsional vibration[J]. Journal of Applied Acoustics,2022,41(4):620-625. [38] 袁松梅,唐志祥,吴奇,等. 纵扭超声换能器设计及其性能测试研究[J]. 机械工程学报,2019,55(1):139-148. YUAN Songmei,TANG Zhixiang,WU Qi,et al. Design of longitudinal torsional ultrasonic transducer and its performance test[J]. Journal of Mechanical Engineering,2019,55(1):139-148. [39] 王桂莲,赵文利,刘文瑞,等. 单激励三维超声振动辅助加工装置的设计与分析[J]. 工具技术,2022,56(8):72-76. Wang Guilian,Zhao Wenli,Liu Wenrui,et al. Design and analysis of auxiliary machining device with single excitation 3D ultrasonic vibration[J]. Tool Engineering,2022,56(8):72-76. [40] 陈鑫宏,周光平,俞宏沛. D-J型纵向超声换能器[C]//中国声学学会功率分会,深圳,2009:37-39. CHEN Xinhong,ZHOU Guangping,YU Hongpei. D-J longitudinal ultrasonic transducer[C]//Acoustical Society of China Power Branch,Shenzhen,2009:37-39. [41] LIU Shen,SHAN Xiaobiao,GUO Kai,et al. Research on a composite power-superimposed ultrasonic vibrator for wire drawing[J]. Applied Sciences,2016,6(2):32. [42] LIU Shen,SHAN Xiaobiao,GUO Kai,et al. Experimental study on titanium wire drawing with ultrasonic vibration[J]. Ultrasonics,2018,83:60-67. [43] HU J,SHIMIZU T,YANG M. Investigation on ultrasonic volume effects:stress superposition,acoustic softening and dynamic impact[J]. Ultrasonics Sonochemistry,2018,48:240-248. [44] OBIELADAN J,STUCKER B. A fabrication methodology for dual-material engineering structures using ultrasonic additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2014,70(1-4):277-284. [45] ZHONG Xiangqiang,HUANG Weiqing,FANG Huanjie,et al. Dynamic characteristics and experiment of push-pull high-power ultrasonic consolidation resonance system for metal foil[J]. Microsystem Technologies,2020,26(9):2997-3010. [46] 雷玉兰,韩光超,盛超杰,等. 10 kN超声辅助塑性成形压力机设计与试验[J]. 北京航空航天大学学报,2019,45(8):1622-1629. LEI Yulan,HAN Guangchao,SHENG Chaojie,et al. Design of 10 kN ultrasonic-assisted plastic forming press machine and experiment[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(8):1622-1629. [47] WAN Weiqiang,CHENG Jianfeng,XU Linhong,et al. Investigation on friction characteristics of micro double cup extrusion assisted by different ultrasonic vibration modes[J]. The International Journal of Advanced Manufacturing Technology,2022,123(7-8):2549-2560. [48] 齐海群,单小彪,谢涛. 正交复合超声振动拉丝[J]. 北京科技大学学报,2010,32(1):89-95. QI Haiqun,SHAN Xiaobiao,XIE Tao. Wire drawing with orthogonal composite ultrasonic vibration[J]. Journal of University of Science and Technology Beijing,2010,32(1):89-95. [49] KIM G D,LOH B G. Characteristics of elliptical vibration cutting in micro-V grooving with variations in the elliptical cutting locus and excitation frequency[J]. Journal of Micromechanics and Microengineering,2008,18(2):25002. [50] GUO Ping,EHMANN K F. Development of a tertiary motion generator for elliptical vibration texturing[J]. Precision Engineering,2013,37(2):364-371. [51] 王晓. 一种三维超声振动加工装置设计与研究[D]. 天津:天津理工大学,2019. WANG Xiao. The Design and research of a three dimensional ultrasonic vibration machining device[D]. Tianjin:Tianjin University of Technology,2019. [52] BIDDELL D C,SANSOME D H. The development of oscillatory metal-drawing equipment-an engineer's view[J]. Ultrasonics,1974,12(5):195-205. [53] SIEGERT K,MOCK A. Wire drawing with ultrasonically oscillating dies[J]. Journal of Materials Processing Technology,1996,60(1):657-660. [54] BLAHA F,LANGENECKER B. Dehnung von zink-kristallen unter ultraschalleinwirkung[J]. Naturwissenschaften,1955,45(20):556-562. BLAHA F,LANGENECKER B. Elongation of zinc monocrystals under ultrasonic action[J]. Naturwissenschaften,1955,45(20):556-562. [55] EAVESA E,SMITHA W,WATERHOUSE W J,et al. Review of the application of ultrasonic vibrations to deforming metals[J]. Ultrasonics,1975,13(4):162-170. [56] DAUD Y,LUCAS M,HUANGZ H. Superimposed ultrasonic oscillations in compression tests of aluminium[J]. Ultrasonics,2006,44:511-515. [57] DUTTAR K,PETROVR H,DELHEZ R,et al. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel[J]. Acta Materialia,2013,61(5):1592-1602. [58] DENG Lei,LI Pan,WANG Xinyun,et al. Influence of low-frequency vibrations on the compression behavior and microstructure of T2 copper[J]. Materials Science and Engineering A,2018,710:129-135. [59] XIE Zhendong,GUAN Yanjin,ZHU Lihua,et al. Investigations on the surface effect of ultrasonic vibration-assisted 6063 aluminum alloy ring upsetting[J]. The International Journal of Advanced Manufacturing Technology,2018,96(9-12):4407-4421. [60] YAO Zhehe,KIM G Y,FAIDLEYL,et al. Experimental study of high-frequency vibration assisted micro/mesoscale forming of metallic materials[J]. Journal of Manufacturing Science and Engineering,2011,133(6):1-8. [61] LIU Shen,XIE Tao,HAN Jing,et al. Stress superposition effect in ultrasonic drawing of titanium wires:An experimental study[J]. Ultrasonics,2022,125:106775. [62] 刘申. 基于丝材振荡的钛丝超声振动拉拔理论与实验研究[D]. 哈尔滨:哈尔滨工业大学,2020. LIU Shen. Theoretical and experimental research on ultrasonic drawing of titanium wire based on wire oscillation[D]. Harbin:Harbin Institute of Technology,2020. [63] 刘汇清. 基于有限元的双激励二维超声振动切削装置设计[D]. 厦门:集美大学,2018. LIU Huiqing. Design of two dimensional ultrasonic vibration cutting device with double-excitation based on FEM[D]. Xiamen:Jimei University,2018. [64] MOUSAVI S A,FEIZI H,MADOLIAT R. Investigations on the effects of ultrasonic vibrations in the extrusion process[J]. Journal of Materials Processing Technology,2007,187-188:657-661. [65] YANG Chongqiu,SHAN Xiaobiao,XIE Tao. Titanium wire drawing with longitudinal-torsional composite ultrasonic vibration[J]. The International Journal of Advanced Manufacturing Technology,2016,83(1-4):645-655. [66] LIU Shen,YANG Yuancai,XIE Tao,et al. Experimental study on fine titanium wire drawing with two ultrasonically oscillating dies[J]. IEEE Access,2018,6:16576-16587. [67] 修晓. 复合超声振动拉丝的理论与实验研究[D]. 哈尔滨:哈尔滨工业大学,2008. XIU Xiao. Study on theory and experiment of wire drawing with composite ultrasonic vibration[D]. Harbin:Harbin Institute of Technology,2008. [68] 雷玉兰,韩光超,彭卓,等. 基于不同振动模式的超声辅助塑性成形工艺概述[J]. 电加工与模具,2018(6):48-52. LEI Yulan,HAN Guangchao,PENG Zhuo,et al. Review of the ultrasonic assisted plastic forming process based on different vibration modes[J]. Electromachining & Mould,2018(6):48-52. [69] 付昌华. 镁合金超声辅助拉深成形性能研究[D]. 上海:上海应用技术大学,2022. FU Changhua. Research on ultrasonic-assisted deep drawing forming properties of magnesium alloy[D]. Shanghai:Shanghai Institute of Technology,2022. [70] XU Teng,DAI Zhicong,HUANG Jianbin,et al. Inhibition of adhesive wear in tantalum cup deep drawing by ultrasonic vibration-assisted forming technology[J]. The International Journal of Advanced Manufacturing Technology,2023,125(9-10):4353-4361. [71] PASIERB A,WOJNAR A. An experimental investigation of deep drawing and drawing processes of thin walled products with utilization of ultrasonic vibrations[J]. Journal of Materials Processing Technology,1992,34(1):489-494. [72] JIMMA T,KASUGA Y,IWAKI N,et al. An application of ultrasonic vibration to the deep drawing process[J]. Journal of Materials Processing Technology,1998,80:406-412. [73] LIU Yang,WANG Chunju,HAN Haibo,et al. Investigation on effect of ultrasonic vibration on micro-blanking process of copper foil[J]. The International Journal of Advanced Manufacturing Technology,2017,93(5-8):2243-2249. [74] OKAZAKI Y. Ultrasonic deep-drawing of aluminum foil[J]. Advanced Technology of Plasticity,1990,3:1333-1340. [75] CHENG Zinan,LI Yanle,LI Jinhui,et al. Ultrasonic assisted incremental sheet forming:constitutive modeling and deformation analysis[J]. Journal of Materials Processing Technology,2022,299:117365. [76] 翟雅迪. 低频振动辅助钛合金塑性变形研究[D]. 济南:山东大学,2021. ZHAI Yadi. Research on low-frequency vibration assisted titanium alloy plastic deformation[D]. Jinan:Shandong University,2021. [77] 孟德安,赵升吨,李泳峄,等. 低频振动式塑性加工的关键技术探讨[J]. 塑性工程学报,2014,21(4):7-13. MENG Dean,ZHAO Shengdun,LI Yongyi,et al. Key technology of plastic forming with low frequency vibration[J]. Journal of Plasticity Engineering,2014,21(4):7-13. [78] DJAVANROODI F,AHMADIAN H,NASERI R,et al. Experimental investigation of ultrasonic assisted equal channel angular pressing process[J]. Archives of Civil and Mechanical Engineering,2016,16(3):249-255. [79] BAGHERZADEH S,ABRINIA K,HAN Q. Ultrasonic assisted equal channel angular extrusion (UAE) as a novel hybrid method for continuous production of ultra-fine grained metals[J]. Materials Letters,2016,169:90-94. [80] NASERI R,KOOHKA K,EBRAHIMI M,et al. Horn design for ultrasonic vibration-aided equal channel angular pressing[J]. The International Journal of Advanced Manufacturing Technology,2017,90(5-8):1727-1734. [81] 马道章. 超声波在金属塑性加工上的应用(续)[J]. 上海有色金属,1980(4):34-39. MA Daozhang. Application of ultrasonic wave in metal plastic processing (continued)[J]. Shanghai Nonferrous Metals,1980(4):34-39. [82] 陈昊. 钢/铝复合板界面力学性能振动轧制处理研究[D]. 北京:北京交通大学,2014. CHEN Hao. Study on interfacial property of Steel/Al bonding plate with vibration rolling post treatment[D]. Beijing:Beijing Jiaotong University,2014. [83] 任忠凯,张鹏杰,杨静碧,等. 一种超声辅助二十辊轧机轧制极薄带的集成装置和方法:中国,202211047899.3[P]. 2022-08-30. REN Zhongkai,ZHANG Pengjie,YANG Jingbi,et al. The invention relates to an integrated device and method for ultrasound-assisted 20-high rolling of extremely thin strip:China,202211047899.3[P]. 2022-08-30. [84] 韩建超,张帅帅,程旭明,等. 一种大厚比镁/钛复合板超声辅助界面微熔温轧复合方法:中国,202211338818.5[P]. 2022-10-28. HAN Jianchao,ZHANG Shuaishuai,CHENG Xuming,et al. The invention relates to an ultrasonic assisted interface micro-melting warm rolling composite method for magnesium/titanium composite plates with large thickness ratio:China,202211338818.5[P]. 2022-10-28. [85] 席刚,刘元铭,张跃飞,等. Ti-6Al-4V合金表面超声振动滚压强化研究[J]. 材料科学与工艺,2020(2):1-7. XI Gang,LIU Yuanming,ZHANG Yuefei,et al. Research on ultrasonic vibration rolling strengthening of Ti-6Al-4V alloy surface[J]. Materials Science and Technology,2020(2):1-7. [86] 张彪,王晓强,田英健,等. 超声振动表层强化技术研究现状及展望[J]. 塑性工程学报,2023,30(2):16-25. ZHANG Biao,WANG Xiaoqiang,TIAN Yingjian,et al. Research status and prospect of ultrasonic vibration surface strengthening technology[J]. Journal of Plasticity Engineering,2023,30(2):16-25. [87] AO Ni,LIU Daoxin,ZHANG Xiaohua,et al. Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process[J]. International Journal of Fatigue,2023,170:107567. [88] 任朝晖,张梓婷,张兴文,等. TC4钛合金超声微锻造强化机理及数值模拟[J]. 东北大学学报(自然科学版),2021,42(9):1306-1312. REN Zhaohui,ZHANG Ziting,ZHANG Xingwen. Strengthening mechanism analysis and numerical simulation of ultrasonic micro-forging of TC4 titanium alloy processing[J]. Journal of Northeastern University (Natural Science),2021,42(9):1306-1312. [89] 郭步高. 超声微锻造辅助增材TC4钛合金的组织演变与工艺优化[D]. 南昌:南昌大学,2020. GUO Bugao. Microstructure evolution and process optimization of additive manufacturing TC4 titanium alloy assisted with ultrasonic micro-forging treatment[D]. Nanchang:Nanchang University,2020. [90] 任朝晖,刘振,张小双,等. 超声微锻造辅助激光熔丝增材制造数值模拟研究[J]. 东北大学学报(自然科学版),2019,40(11):1590-1594. REN Zhaohui,LIU Zhen,ZHANG Xiaoshuang,et al. Numerical simulation research of ultrasonic micro-forging assisted laser-wire additive manufacturing[J]. Journal of Northeastern University (Natural Science),2019,40(11):1590-1594. [91] 魏丽武. 超声辅助无氧铜TU1板材旋压成形工艺研究[D]. 秦皇岛:燕山大学,2022. WEI Liwu. Study on ultrasonic assisted oxygen free copper TU1 sheet spinning process[D]. Qinhuangdao:Yanshan University,2022. [92] 肖志兵,李晓谦,陈国琼,等. T250钢大直径薄壁圆筒旋压工艺试验研究[J]. 航天制造技术,2006(4):17-20. XIAO Zhibing,LI Xiaoqian,CHEN Guoqiong,et al. Experimental study on spinning process of T250 steel large-diameter thin-wall cylinder[J]. Aerospace Manufacturing Technology,2006(4):17-20. [93] RASOLI M A,ABDULLAH A,FARZIN M,et al. Influence of ultrasonic vibrations on tube spinning process[J]. Journal of Materials Processing Technology,2012,212(6):1443-1452. [94] WANG Xingxing,QI Zhenchao,CHEN Wenliang,et al. Study on the effects of transverse ultrasonic vibration on deformation mechanism and mechanical properties of riveted lap joints[J]. Ultrasonics,2021,116:106452. [95] XIE Zhendong,CHEN Feng,HE Weikai. The effects of ultrasonic vibration on riveting quality[J]. Scientific Reports,2022,12(1):12948. [96] 黄志祥,陈文亮,姜丽萍,等. 超声振动对钛合金铆钉压铆力的影响[J]. 航空制造技术,2014(10):79-82,87. HUANG Zhixiang,CHEN Wenliang,JIANG Liping,et al. Influences of ultrasonic vibration on riveting force of titanium alloy rivet[J]. Aeronautical Manufacturing Technology,2014(10):79-82,87. [97] 刘治华,张天增,杨孟俭,等. 超声滚压参数对18CrNiMo7-6齿轮钢表面性能的影响[J]. 表面技术,2020,49(3):309-318. LIU Zhihua,ZHANG Tianzeng,YANG Mengjian,et al. Effect of ultrasonic rolling parameters on surface properties of 18CrNiMo7-6 gear steel[J]. Surface Technology,2020,49(3):309-318. [98] 解振东. 镁/铝合金超声振动辅助塑性成形中的材料变形行为与超声作用机制研究[D]. 济南:山东大学,2019. XIE Zhendong. Study on materials deformation behaviors and ultrasonic acting mechanisms of ultrasonic vibration assisted Mg/Al alloys metal forming[J]. Jinan:Shandong University,2019. [99] MONGAN P G,HINCHY E P,O'DOWD N P,et al. Optimisation of ultrasonically welded joints through machine learning[J]. Procedia CIRP,2020,93:527-531. [100] SATPATHY M P,MISHRA S B,SAHOO S K. Ultrasonic spot welding of aluminum-copper dissimilar metals:A study on joint strength by experimentation and machine learning techniques[J]. Journal of Manufacturing Processes,2018,33:96-110. [101] LIN Shuyu. Study of sandwiched piezoelectric ultrasonic torsional transducer[J]. Ultrasonics,1994,32(6):461-465. [102] JIAN Xiao,SONG Dixon,EDWARDS R S,et al. Coupling mechanism of electromagnetic acoustical transducers for ultrasonic generation[J]. Journal of the Acoustical Society of America,2006,119(5):2693-2701. [103] LIN Shuyu. The radial composite piezoelectric ceramic transducer[J]. Sensors & Actuators A Physical,2008,141(1):136-143. [104] ZHANG Hui. Power generation transducer from magnetostrictive materials[J]. Applied Physics Letters,2011,12:1-12. [105] LI Yafang,HUANG Wenmei,WANG Bowen. Design and output characteristics of ultrasonic transducer based on rare-earth giant magnetostrictive material[J]. IEEE Transactions on Magnetics,2021,99:1-13. [106] FANG Shanxiang,ZHANG Qinjian,ZHAO Huiling,et al. The design of rare-earth giant magnetostrictive ultrasonic transducer and experimental study on its application of ultrasonic surface strengthening[J]. Micromachines,2018,9(3):98-105. [107] 刘雪峰,田少杰,王文静,等. 金属层状复合材料多超声耦合辅助轧制复合设备及方法:中国,202310586092.5[P]. 2023-05-23. LIU Xuefeng,TIAN Shaojie,WANG Wenjing,et al. Multi-ultrasonic coupling assisted rolling composite equipment and method for metal layered composite materials:China,202310586092.5[P]. 2023-05-23. |
[1] | 蔡万宠, 张建富, 郁鼎文, 吴志军, 冯平法. 超磁致伸缩超声振动系统的机电转换效率研究[J]. 机械工程学报, 2017, 53(19): 52-58. |
[2] | 顾煜炯;周兆英;姚健. 超声振动系统的四端网络设计方法及其应用[J]. , 1997, 33(3): 94-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||