[1] 王迪, 邓国威, 杨永强, 等. 金属异质材料增材制造研究进展[J]. 机械工程学报, 2021, 57(1):186-198. WANG Di, DENG Guowei, YANG Yongqiang, et al. Research progress of additive manufacturing of metal heterogeneous materials[J]. Journal of Mechanical Engineering, 2021, 57(1):186-198. [2] 姜兴宇, 刘傲, 杨国哲, 等. 一种激光增材制造过程低碳建模与工艺参数优化方法[J]. 机械工程学报, 2022, 58(5):223-238. JIANG Xingyu, LIU Ao, YANG Guozhe, et al. A low carbon modeling and process parameter optimization method for laser additive manufacturing process[J]. Journal of Mechanical Engineering, 2022, 58(5):223-238. [3] GIRAUDET L, IMBERT J P, TREMBLAY S, et al. High rate of inattentional deafness in simulated air traffic control tasks[J]. Procedia Manufacturing, 2015, 3:5169-5175. [4] VICKI A, BURNETT G, KREHL C. Driver-passenger collaboration as a basis for human machine interface design for vehicle navigation systems[J]. Ergonomics, 2016, 60(3):1-26. [5] PARK K, IM Y. Ergonomic guidelines of head-up display user interface during semi-automated driving[J]. Electronics, 2020, 9(4):1-16. [6] CAHYONO T A, SUSANTO T D. Acceptance factors and user design of mobile e-government website (study case e-government website in Indonesia)[J]. Procedia Computer Science, 2019, 161:90-98. [7] STEPHAN W, QUENTIN L, DIMITR W, et al. Value of eye-tracking data for classification of information processing-intensive handling tasks:quasi-experimental study on cognition and user interface design[J]. JMIR Human Factors, 2020, 7(2):e15581. [8] MEZENTSEV A, PAVLOV V, GOLOBOKOV Y, et al. The efficiency indicator for information visualization system of the tokamak experimental device operating in repetitively pulsed mode[J]. Fusion Engineering and Design, 2019, 143:115-120. [9] 吴晓莉, 薛澄岐, 王海燕, 等. 复杂系统人机交互界面的E-C映射模型[J]. 机械工程学报, 2014, 50(12):206-212. WU Xiaoli, XUE Chengqi, WANG Haiyan, et al. E-C mapping model for human computer interaction interface of complex system[J]. Journal of Mechanical Engineering, 2014, 50(12):206-212. [10] 王大颜, 瞿珏, 王崴, 等. 防空反导装备指控舱显控台界面布局优化设计与评价[J]. 空军工程大学学报, 2021, 22(5):104-111. WANG Dayan, QU Jue, WANG Wai, et al. Optimization design and evaluation of interface layout of display console of air defense and anti-missile equipment command module[J]. Journal of Air Force Engineering University, 2021, 22(5):104-111. [11] 金昱潼, 吕健, 潘伟杰, 等. 基于视觉注意机制虚拟交互界面布局优化[J]. 计算机工程与设计, 2020, 41(3):763-769. JIN Yutong, LÜ Jian, PAN Weijie, et al. Layout optimization of virtual interface based on visual attention mechanism[J]. Computer Engineering and Design, 2020, 41(3):763-769. [12] 张建敏, 付俊. 拖拉机用户界面人机分析及JACK仿真优化研究[J]. 农机化研究, 2022, 44(4):244-250. ZHANG Jianmin, FU Jun. Research on human machine analysis and JACK simulation optimization of tractor user interface[J]. Agricultural Mechanization Research, 2022, 44(4):244-250. [13] Deng L, Wang G H, Yu S H, et al. Layout design of human-machine interaction interface of cabin based on cognitive ergonomics and GA-ACA[J]. Computational Intelligence and Neuroscience, 2016, (3):1-12. [14] 赵子健, 吕健, 金昱潼, 等. 人因特性驱动蚁群算法的操作界面布局优化[J]. 组合机床与自动化加工技术, 2020, (5):124-127, 131. ZHAO Zijian, LÜ Jian, JIN Yutong, et al. Optimization of operating interface layout of ant colony algorithm driven by human factor features[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020, (5):124-127, 131. [15] 康慧, 杨随先, 邓淑文, 等. 产品操作界面元素布局多目标优化设计[J]. 包装工程, 2020, 41(8):149-153, 172. KANG Hui, YANG Suixian, DENG Shuwen, et al. Multi-objective design optimization of the layout of product interface elements[J]. Packaging Engineering, 2020, 41(8):149-153, 172. [16] 张宝, 丁敏, 李燕杰. 基于视觉感知强度的人机交互界面优化设计[J]. 中国机械工程, 2016, 27(16):2196-2202. ZHANG Bao, DING Min, LI Yanjie. Optimized design of human-computer interaction interface based on visual perception intensity[J]. China Mechanical Engineering, 2016, 27(16):2196-2202. [17] 管超, 张则强, 李云鹏, 等. 多行设备布局的一种多目标差分进化算法和线性规划混合方法[J]. 机械工程学报, 2019, 55(13):160-174. GUAN Chao, ZHANG Zeqiang, LI Yunpeng, et al. A hybrid method of multi-objective differential evolution algorithm and linear programming for multi-line equipment layout[J]. Journal of Mechanical Engineering, 2019, 55(13):160-174. [18] 杨涛, 杨育, 张东东. 考虑客户需求偏好的产品创新概念设计方案生成[J]. 计算机集成制造系统, 2015, 21(4):875-884. YANG Tao, YANG Yu, ZHANG Dongdong. Product innovation conceptual design scheme generation considering customer demand preference[J]. Computer Integrated Manufacturing System, 2015, 21(4):875-884. [19] 陈德钧, 方卫宁, 秦永贞, 等. 轨道车辆司机操纵台人机界面布局优化模型与算法[J]. 铁道学报, 2014, 36(11):40-47. CHEN Dejun, FANG Weining, QIN Yongzhen, et al. Optimization model and algorithm of human machine interface layout of railway vehicle driver's console[J] Journal of Railways, 2014, 36(11):40-47. [20] 陈暄, 孟凡光, 吴吉义. 求解大规模优化问题的改进狼群算法[J]. 系统工程理论与实践, 2021, 41(3):790-808. CHEN Xuan, MENG Fanguang, WU Jiyi. Improved wolf pack algorithm for solving large-scale optimization problems[J]. Systems Engineering-Theory & Practice, 2021, 41(3):790-808. [21] 陈丛. 基于狼群算法的SAR图像属性散射中心参数估计[J]. 红外与激光工程, 2021, 50(4):258-264. CHEN Cong. Estimation of scattering center parameters of SAR image attributes based on wolf swarm algorithm[J]. Infrared and Laser Engineering, 2021, 50(4):258-264. [22] 鲜思东, 李堂金. 基于改进狼群算法的模糊时间序列预测模型[J]. 控制理论与应用, 2020, 37(7):1637-1643. XIAN Sidong, LI Tangjin. Fuzzy time series prediction model based on improved wolf pack algorithm[J]. Control Theory & Applications, 2020, 37(7):1637-1643. [23] 孙冉, 张惠珍. 多目标双重覆盖下的急救中心选址及其狼群算法求解[J]. 科技和产业, 2020, 20(5):95-102, 155. SUN Ran, ZHANG Huizhen. The location of emergency center under the multi-objective double-covering and solving by wolf pack algorithm[J]. Science Technology and Industry, 2020, 20(5):95-102, 155. [24] 敖山, 彭雄飞, 刘志中. 多角色优化策略的灰狼-共生生物搜索算法[J]. 小型微型计算机系统, 2021, 42(11):2276-2283. AO Shan, PENG Xiongfei, LIU Zhizhong. Multi role optimization strategic grey wolf optimizer-symbiotic organisms search algo-rithm[J]. Journal of Chinese Computer Systems, 2021, 42(11):2276-2283. [25] 蒋建军, 张力, 王以群, 等. 基于人因可靠性的核电厂数字化人机界面功能布局优化方法研究[J]. 原子能科学技术, 2015, 49(9):1666-1672. JIANG Jianjun, ZHANG Li, WANG Yiqun, et al. Research on optimization method of digital man-machine interface function layout of nuclear power plant based on human reliability[J]. Atomic Energy Science and Technology, 2015, 49(9):1666-1672. |