机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 44-64.doi: 10.3901/JME.2023.19.044
张赫, 李海铭, 张佳闪, 任昊, 李浩天, 赵杰
收稿日期:
2023-05-23
修回日期:
2023-07-25
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
赵杰(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为极端环境作业机器人关键技术、医疗及康复机器人关键技术与应用和航天地面仿真与测试技术。E-mail:jzhao@hit.edu.cn
作者简介:
张赫,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为医疗机器人、仿生水陆两栖机器人。E-mail:zhanghe0451@hit.edu.cn;李海铭,男,2000年出生,硕士。主要研究方向为连续体机械手、柔性手术机器人、运动规划。E-mail:22S008067@stu.hit.edu.cn
基金资助:
ZHANG He, LI Haiming, ZHANG Jiashan, REN Hao, LI Haotian, ZHAO Jie
Received:
2023-05-23
Revised:
2023-07-25
Online:
2023-10-05
Published:
2023-12-11
摘要: 传统刚性手术器械的运动局限性以及越来越严苛的腔镜微创手术诉求等因素推动了以连续体为代表的柔性手术机器人系统技术的发展与应用。这种柔性器械凭借结构尺度小、运动灵活度高等特性,能够通过狭窄弯曲的腔道通路完成手术操作,达到无切口的无创手术效果,被广泛应用于经自然腔道内镜等手术。概述了连续体机械手若干方面的关键技术,包括构型设计、结构优化、理论建模、运动控制、人机交互以及形状与力感知等方面的最新研究进展和面临的挑战。根据连续体机械手在不同腔镜微创手术中的应用,分类介绍了柔性手术机器人系统的研究现状,对其技术特点和临床应用进行了综合性分析总结,并对以连续体为代表的柔性手术机器人系统的技术与应用前景进行了展望。
中图分类号:
张赫, 李海铭, 张佳闪, 任昊, 李浩天, 赵杰. 面向腔镜微创手术的连续体机械手关键技术与研究进展[J]. 机械工程学报, 2023, 59(19): 44-64.
ZHANG He, LI Haiming, ZHANG Jiashan, REN Hao, LI Haotian, ZHAO Jie. Key Technologies and Research Progress of Continuum Manipulators for Minimally Invasive Laparoscopic Surgery[J]. Journal of Mechanical Engineering, 2023, 59(19): 44-64.
[1] 林良明. 机器人辅助微创外科手术的发展[J]. 中国医疗器械信息,2003(2):16-18. LIN Liangming. The development of robotic-assisted minimally invasive surgery[J]. China Medical Device Information,2003(2):16-18. [2] 阎于珂,邹书兵. 机器人辅助经自然腔道内镜手术的研究现状与展望[J]. 中国微创外科杂志,2014,14(6):563-567 YAN Yuke,ZOU Shubing. Research status and prospect of robotic-assisted endoscopic surgery through natural orifice passage[J]. Chinese Journal of Minimally Invasive Surgery,2014,14(6):563-567. [3] 曹悦,杨贺迪,缪淼,等. 医疗手术机器人的现状与未来[J]. 中国科技信息,2021(10):123-125. CAO Yue,YANG Hedi,MIAO Miao,et al. Current situation and future of medical surgical robots[J]. China Science and Technology Information,2021(10):123-125. [4] FRESCHI C,FERRARI V,MELFI F,et al. Technical review of the da vinci surgical telemanipulator[J]. International Journal of Medical Robotics and Computer Assisted Surgery:MRCAS,2013,9(4):396-406. [5] MILLAN B,NAGPAL S,DING M,et al. A scoping review of emerging and established surgical robotic platforms with applications in urologic surgery[J]. Société Internationale d'Urologie Journal (SIUJ),2021,2:300-310. [6] TATEYA I,KOH Y W,TSANG R K,et al. Flexible next-generation robotic surgical system for transoral endoscopic hypopharyngectomy:A comparative preclinical study[J]. Head & Neck,2018,40(1):16-23. [7] SEELIGER B,DIANA M,RUURDA J P,et al. Enabling single-site laparoscopy:The sport platform[J]. Surgical Endoscopy,2019,33(11):3696-3703. [8] 吴皓,贾欢. 耳科手术机器人的研发现状及挑战[J]. 中华耳鼻咽喉头颈外科杂志,2018,53(11):801-805. WU Hao,JIA Huan. Research and development status and challenges of otological surgical robots[J]. Chinese Journal of Otorhinolaryngology-Head and Neck Surgery,2018,53(11):801-805. [9] 刘桂强. 线驱动柔性手术机器人系统设计[D]. 哈尔滨:哈尔滨工业大学,2019. LIU Guiqiang. Design of wire-driven flexible surgical robot system[D]. Harbin:Harbin Institute of Technology,2019. [10] OMISORE O M,HAN Shipeng,XIONG Jing,et al. A review on flexible robotic systems for minimally invasive surgery[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,52(1):631-644. [11] KIM J,MATHELIN M,IKUTA K,et al. Advancement of flexible robot technologies for endoluminal surgeries[J]. Proceedings of the IEEE,2022,110(7):909-931. [12] BURGNER-KAHRS J,RUCKER D C,CHOSET H. Continuum robots for medical applications:a survey[J]. IEEE Transactions on Robotics,2015,31(6):1261-1280. [13] KIM Y J,CHENG Shanbao,KIM S,et al. A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery[J]. IEEE Transactions on Robotics,2014,30(2):382-395. [14] KIM Y J,CHENG Shanbao,KIM S,et al. Design of a tubular snake-like manipulator with stiffening capability by layer jamming[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve,Portugal,2012:4251-4256. [15] LIU Ning,BERGELES C,YANG Guangzhong. Design and analysis of a wire-driven flexible manipulator for bronchoscopic interventions[C]//2016 IEEE International Conference on Robotics and Automation (ICRA),Stockholm,2016:4058-4063. [16] BLANC L,DELCHAMBRE A,LAMBERT P. Flexible medical devices:Review of controllable stiffness solutions[J]. Actuators,2017,6(3):23-35. [17] CHUNG D G,KIM J,BAEK D,et al. Shape-locking mechanism of flexible joint using mechanical latch with electromagnetic force[J]. IEEE Robotics and Automation Letters,2019,4(3):2661-2668. [18] SUH J,KIM K,JEONG J,et al. Design considerations for a hyper-redundant pulleyless rolling joint with elastic fixtures[J]. IEEE/ASME Transactions on Mechatronics,2015,20(6):2841-2852. [19] WANG P,YANG X,WANG X,et al. General kinetostatic modeling and deformation analysis of a two-module rod-driven continuum robot with friction considered[J]. Chinese Journal of Mechanical Engineering,2023,36(2):68-81. [20] OLIVER-BUTLER K,TILL J,RUCKER C. Continuum robot stiffness under external loads and prescribed tendon displacements[J]. IEEE Transactions on Robotics,2019,35(2):403-419. [21] YOU J M,KIM H,KIM J,et al. Design and analysis of high-stiffness hyperredundant manipulator with sigma-shaped wire path and rolling joints[J]. IEEE Robotics and Automation Letters,2021,6(4):7357-7364. [22] AMANOV E,NGUYEN T D,MARKMANN S,et al. Toward a flexible variable stiffness endoport for single-site partial nephrectomy[J]. Annals of Biomedical Engineering,2018,46(10):1498-1510. [23] BRANCADORO M,MANTI M,GRANI F,et al. Toward a variable stiffness surgical manipulator based on fiber jamming transition[J]. Frontiers in Robotics and AI,2019,6:12-20. [24] SELEEM I A,EL-HUSSIENY H,ISHII H. Recent developments of actuation mechanisms for continuum robots:a review[J]. International Journal of Control,Automation,and Systems,2023,21(5):1592-1609. [25] CHOI H,KWAK H S,LIM Y A,et al. Surgical robot for single-incision laparoscopic surgery[J]. IEEE Transactions on Biomedical Engineering,2014,61(9):2458-2466. [26] HWANG M,YANG U,KONG D,et al. A single port surgical robot system with novel elbow joint mechanism for high force transmission[J]. International Journal of Medical Robotics and Computer Assisted Surgery,2017,13(4):1808-1815. [27] LEE J,KIM Y J,ROH S,et al. Tension propagation analysis of novel robotized surgical platform for transumbilical single-port access surgery[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo,Japan,2013:3083-3089. [28] LEE D H,HWANG M,KIM J,et al. Payload optimization of surgical instruments with rolling joint mechanisms[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas,NV,USA,2020:3131-3136. [29] BERTHET-RAYNE P,LEIBRANDT K,KIM K,et al. Rolling-joint design optimization for tendon driven snake-like surgical robots[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid,Spain,2018:4964-4971. [30] IKUTA K,NOKATA M,ARITOMI S. Biomedical micro robots driven by miniature cybernetic actuator[C]//Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures,Sensors,Actuators,Machines and Robotic Systems. Oiso,Japan,1994:263-268. [31] XU Kai,SIMAAN N. Actuation compensation for flexible surgical snake-like robots with redundant remote actuation[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation. Orlando,FL,2006:4148-4154. [32] HU Yang,ZHANG Lin,LI Wei,et al. Design and fabrication of a 3-D printed metallic flexible joint for snake-like surgical robot[J]. IEEE Robotics and Automation Letters,2019,4(2):1557-1563. [33] 王俊刚. 绳驱动超冗余度机械臂设计与运动规划技术研究[D]. 上海:上海交通大学,2017. WANG Jungang. Research on design and motion planning technology of rope-driven super redundancy manipulator[D]. Shanghai:Shanghai Jiao Tong University,2017. [34] HAO Y,ZHANG S,FANG B,et al. A review of smart materials for the boost of soft actuators,soft sensors,and robotics applications[J]. Chinese Journal of Mechanical Engineering,2022,35(2):37-53. [35] RAZJIGAEV A,PANDEY A K,HOWARD D,et al. End-to-end design of bespoke,dexterous snake-like surgical robots:a case study with the ravenII[J]. IEEE Transactions on Robotics,2022,38(5):2827-2840. [36] ZHANG Xue,LI Weibing,CHIU P W Y,et al. A novel flexible robotic endoscope with constrained tendon-driven continuum mechanism[J]. IEEE Robotics and Automation Letters,2020,5(2):1366-1372. [37] WANG Haodong,WANG Xiaolong,YANG Wenlong,et al. Construction of controller model of notch continuum manipulator for laryngeal surgery based on hybrid method[J]. IEEE/ASME Transactions on Mechatronics,2021,26(2):1022-1032. [38] WEBSTER R J,JONES B A. Design and kinematic modeling of constant curvature continuum robots:a review[J]. The International Journal of Robotics Research,2010,29(13):1661-1683. [39] 胡海燕,王鹏飞,孙立宁,等. 线驱动连续型机器人的运动学分析与仿真[J]. 机械工程学报,2010,46(19):1-8. HU Haiyan,WANG Pengfei,SUN Lining,et al. Kinematic analysis and simulation of wire-driven continuous robot[J]. Journal of Mechanical Engineering,2010,46(19):1-8. [40] KIM S,XU Wenjun,REN Hongliang. Inverse kinematics with a geometrical approximation for multi-segment flexible curvilinear robots[J]. Robotics,2019,8(2):48. [41] AI Xiaojie,GAO Anzhu,LIN Zecai,et al. A multi-contact-aided continuum manipulator with anisotropic shapes[J]. IEEE Robotics and Automation Letters,2021,6(3):4560-4567. [42] 赵智远. 线驱动连续型机械臂运动学与运动规划研究[D]. 长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2019. ZHAO Zhiyuan. Research on kinematics and motion planning of wire-driven continuous manipulator[D]. Changchun:University of Chinese Academy of Sciences (Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences),2019. [43] THURUTHEL T G,FALOTICO E,CIANCHETTI M,et al. Learning global inverse kinematics solutions for a continuum robot[C]//ROMANSY 21-Robot Design,Dynamics and Control. Cham:Springer International Publishing,2016:47-54. [44] LEE K H,FU D K C,LEONG M C W,et al. Nonparametric online learning control for soft continuum robot:an enabling technique for effective endoscopic navigation[J]. Soft Robotics,2017,4(4):324-337. [45] CHIKHAOUI M T,BURGNER-KAHRS J. Control of continuum robots for medical applications:state of the art[C]//16th International Conference on New Actuators. Bremen,Germany,2018:1-11. [46] XU Wenjun,POON C C Y,YAM Y,et al. Motion compensated controller for a tendon-sheath-driven flexible endoscopic robot[J]. The international journal of medical robotics and computer assisted surgery:MRCAS,2017,13(1):1. [47] BAJO A,DHARAMSI L M,NETTERVILLE J L,et al. Robotic-assisted micro-surgery of the throat:the transnasal approach[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe,Germany,2013:232-238. [48] 付宜利,潘博. 微创外科手术机器人技术研究进展[J]. 哈尔滨工业大学学报,2019,51(1):1-15 FU Yili,PAN Bo. Research progress of minimally invasive surgical robot technology[J]. Journal of Harbin Institute of Technology,2019,51(1):1-15 [49] MEHRDAD S,LIU Fei,PHAM M T,et al. Review of advanced medical telerobots[J]. Applied Sciences,2021,11(1):209. [50] ROZEBOOM E,RUITER J,FRANKEN M,et al. Intuitive user interfaces increase efficiency in endoscope tip control[J]. Surgical Endoscopy,2014,28(9):2600-2605. [51] SONG J,GONENC B,GUO J,et al. Intraocular snake integrated with the steady-hand eye robot for assisted retinal microsurgery[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore,2017:6724-6729. [52] ALLEMANN P,MD,OTT L,et al. Joystick interfaces are not suitable for robotized endoscope applied to NOTES[J]. Surgical Innovation,2009,16(2):111-116. [53] AHN J,HWANG M,BAEK D,et al. Comparison of master-slave mapping strategies for efficient robotics endoscopy[C]//The Hamlyn Symposium on Medical Robotics,2018:117-118. [54] OTT L,NAGEOTTE F,ZANNE P,et al. Robotic assistance to flexible endoscopy by physiological-motion tracking[J]. IEEE Transactions on Robotics,2011,27(2):346-359, [55] RASSI I El,RASSI J M El. A review of haptic feedback in teleoperated robotic surgery[J]. Journal of Medical Engineering & Technology,2020,44(5):247-254. [56] ROY R,WANG L,SIMAAN N. Modeling and estimation of friction,extension,and coupling effects in multisegment continuum robots[J]. IEEE/ASME Transactions on Mechatronics,2017,22(2):909-920. [57] 张伟浩. 连续体手术执行臂的设计优化与控制研究[D].上海:上海交通大学,2019. ZHANG Weihao. Research on design optimizationand control of continuum surgical execution arm[D]. Shanghai:Shanghai Jiaotong University,2019. [58] KANEKO M,YAMASHITA T,TANIE K. Basic considerations on transmission characteristics for tendon drive robots[C]//Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments. Pisa,Italy,1991:827-832. [59] CHIANG L S,JAY P S,VALDASTRI P,et al. Tendon sheath analysis for estimation of distal end force and elongation[C]//2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore,2009:332-337. [60] CHEN Lin,WANG Xingsong. Modeling of the tendon-sheath actuation system[C]//201219th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Auckland,New Zealand,2012:489-494. [61] ZGLIMBEA R,FINCA V,GREABAN E,et al. Identification of systems with friction via distributions using the modified friction lugre model[C]//Proceedings of the 13th WSEAS international conference on Systems. Wisconsin,United States,2009:579-584. [62] HASSANI V,TJAHJOWIDODO T. Structural response investigation of a triangular-based piezoelectric drive mechanism to hysteresis effect of the piezoelectric actuator[J]. Mechanical Systems and Signal Processing,2013,36(1):210-223. [63] DO T N,TJAHJOWIDODO T,LAU M W S,et al. Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems[J]. Mechatronics,2014,24(1):12-22. [64] WU Di,ZHANG Yao,OURAK M,et al. Hysteresis modeling of robotic catheters based on long short-term memory network for improved environment reconstruction[J]. IEEE Robotics and Automation Letters,2021,6(2):2106-2113. [65] REILINK R,STRAMIGIOLI S,MISRA S. Image-based hysteresis reduction for the control of flexible endoscopic instruments[J]. Mechatronics,2013,23(6):652-658. [66] LEE D H,KIM Y H,COLLINS J,et al. Non-linear hysteresis compensation of a tendon-sheath-driven robotic manipulator using motor current[J]. IEEE Robotics and Automation Letters,2021,6(2):1224-1231. [67] WANG Yifan,WU Zhonghao,XU Kai,et al. Inverse kinematics and dexterous workspace formulation for 2-segment continuum robots with inextensible segments[J]. IEEE Robotics and Automation Letters,2022,7(1):510-517. [68] DO T N,TJAHJOWIDODO T,LAU M W S,et al. Adaptive control for enhancing tracking performances of flexible tendon-sheath mechanism in natural orifice transluminal endoscopic surgery (NOTES)[J]. Mechatronics,2015,28:67-78. [69] WANG Xiangyu,BIE Dongyang,HAN Jianda. Active modeling and compensation for the hysteresis of a robotic flexible ureteroscopy[J]. IEEE Access,2022,8:100620-100630. [70] 王红红,杜敬利,保宏. 肌腱驱动连续体/软体机器人控制策略[J]. 机器人,2020,42(5):626-640. WANG Honghong,DU Jingli,BAO Hong. The control strategy of tendon-driven continuum/soft robot[J]. Robot,2020,42(5):626-640. [71] LIU Hao,FARVARDIN A,PEDRAM S A,et al. Large deflection shape sensing of a continuum manipulator for minimally-invasive surgery[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle,WA,USA,2015:201-206. [72] BARDOU B,ZANNE P,NAGEOTTE F,et al. Control of a multiple sections flexible endoscopic system[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei,Taiwan,China. 2010:2345-2350. [73] BARDOU B,NAGEOTTE F,ZANNE P,et al. Improvements in the control of a flexible endoscopic system[C]//2012 IEEE International Conference on Robotics and Automation (ICRA). Saint Paul,MN,USA,2012:3725-3732. [74] OTT L,ZANNE P,NAGEOTTE F,et al. Physiological motion rejection in flexible endoscopy using visual servoing[C]//2009 IEEE International Conference on Robotics and Automation (ICRA),Kobe,Japan,2009:2928-2933. [75] BAEK D,SEO J H,KIM J,et al. Hysteresis compensator with learning-based hybrid joint angle estimation for flexible surgery robots[J]. IEEE Robotics and Automation Letters,2020,5(4):6837-6844. [76] AZIMI E,JIANG B,ETHAN T,et al. Teleoperative control of intraocular robotic snake:vision-based angular calibration[C]//2017 IEEE sensors,Glasgow,UK,2017:1-3. [77] SHI Chaoyang,LUO Xiongbiao,QI Peng,et al. Shape sensing techniques for continuum robots in minimally invasive surgery:A survey[J]. IEEE Transactions on Biomedical Engineering,2017,64(8):1665-1678. [78] ROESTHUIS R J,KEMP M,VAN DEN DOBBELSTEEN J J,et al. Three-dimensional needle shape reconstruction using an array of firber bragg grating sensors[J]. IEEE/ASME Transactions on Mechatronics,2014,19(4):1115-1126. [79] 赵士元,崔继文,陈勐勐. 光纤形状传感技术综述[J].光学精密工程,2020,28(1):10-29. ZHAO Shiyuan,CUI Jiwen,CHEN Mengmeng. Review on optical fiber shape sensing technology[J]. Optical Precision Engineering,2020,28(1):10-29. [80] ABUSHAGUR AAG,ARSAD N,REAZ MI,et al. Advances in Bio-tactile sensors for minimally invasive surgery using the fibre bragg grating force sensor technique:A survey[J]. Sensors,2014,14(4):6633-6665. [81] ZHOU Yuanfen,HE Yanlin,SUN Guangkai,et al. Helical optical fiber sensing configuration for hyper-elastic soft surgical manipulators[J]. Optik,2019,198:163242. [82] LAI Wenjie,CAO Lin,PHAN P T,et al. Joint rotation angle sensing of flexible endoscopic surgical robots[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Paris,France,2020:4789-4795. [83] KHAN F,DENASI A,BARRERA D,et al. Multi-core optical fibers with bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal,2019,19(14):5878-5884. [84] LIN Zecai,GAO Anzhu,AI Xiaojie,et al. ARei:augmented-reality-assisted touchless teleoperated robot for endoluminal intervention[J]. IEEE/ASME Transactions on Mechatronics,2022,27(5):3144-3154. [85] SEFATI S,GAO Cong,IORDACHITA I,et al. Data-driven shape sensing of a surgical continuum manipulator using an uncalibrated fiber bragg grating sensor[J]. IEEE Sensors Journal,2021,21(3):3066-3076. [86] LU Yiang,LU Bo,LI Bin,et al. Robust three-dimensional shape sensing for flexible endoscopic surgery using multi-core FBG sensors[J]. IEEE Robotics and Automation Letters,2021,6(3):4835-4842. [87] REN Hongliang,SUN Jinji. Electromagnetic actuation and sensing in medical robotics[M]. Berlin,Germany:Springer,2018. [88] ALOI V A,RUCKER D C. Estimating loads along elastic rods[C]//IEEE International Conference on Robotics and Automation(ICRA). Montreal,QC,Canada,2019:2867-2873. [89] JÄCKLE S,GARCÍA-VÁZQUEZ V,EIXMANN T,et al. Three-dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair[J]. International Journal of Computer Assisted Radiology and Surgery,2020,15(6):1033-1042. [90] CROOM J M,RUCKER D C,ROMANO J M,et al. Visual sensing of continuum robot shape using self-organizing maps[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage,AK,USA,2010:4591-4596. [91] MA Xin,CHIU P W,LI Zheng. Shape sensing of flexible manipulators with visual occlusion based on bezier curve[J]. IEEE Sensors Journal,2018,18(19):8133-8142. [92] LI Jinhua,SUN Yanan,SU He,et al. Marker-based shape estimation of a continuum manipulator using binocular vision and its error compensation[C]//2020 IEEE International Conference on Mechatronics and Automation (ICMA). Beijing,China,2020:1745-1750. [93] 曹悦,杨贺迪,缪淼,等. 医疗手术机器人的现状与未来[J]. 中国科技信息,2021(10):123-125. CAO Yue,YANG Hedi,MIAO Miao,et al. Current situation and future of medical surgical robots[J]. China Science and Technology Information,2021(10):123-125. [94] 徐明玉. 绳驱动手术器械动力学建模与回差补偿控制[D]. 哈尔滨:哈尔滨工业大学,2020. XU Mingyu. Dynamic modeling and differential com-pensation control of rope-driven surgical instruments[D]. Harbin:Harbin Institute of Technology,2020. [95] 齐飞,张恒,裴海珊,等. 基于力传递模型的连续体机器人驱动误差补偿研究[J]. 农业机械学报,2023,54(1):402-411. QI Fei,ZHANG Heng,PEI Haishan,et al. Research on driving error compensation of continuum robot based on force transfer model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):402-411. [96] DO T N,TJAHJOWIDODO T,LAU M W S,et al. A new approach of friction model for tendon-sheath actuated surgical systems:nonlinear modelling and parameter identification[J]. Mechanism and Machine Theory,2015,85:14-24. [97] LI Xiaoguo,CAO Lin,ANTHONY T,et al. Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning[J]. Mechanism and Machine Theory,2019,134:323-337. [98] LI Xiaoguo,ANTHONY T,CAO Lin,et al. Deep learning for haptic feedback of flexible endoscopic robot without prior knowledge on sheath configuration[J]. International Journal of Mechanical Sciences,2019,163:105-129. [99] HEUNIS C M,BELFIORE V,VENDITTELLI M,et al. Reconstructing endovascular catheter interaction forces in 3D using multicore optical shape sensors[C]//2019 IEEE/RSJ International. Conference on Intelligent Robots and Systems (IROS). Macau,China,2019:5419-5425. [100] RASMUSSEN E,GUO D,MURTHY V,et al. A soft resistive sensor with a semicircular cross-sectional channel for soft cardiac catheter ablation[J]. Sensors,2021,21(12):4130-4145. [101] DENG Yinan,YANG Tangwen.,DAI Shaotao. A miniature triaxial fiber optic force sensor for flexible ureteroscopy[J]. IEEE Transactions on Biomedical Engineering,2021,68(8):2339-2347. [102] LAI Wenjie,CAO Lin,TAN R X,et al. Force sensing with 1mm fiber bragg gratings for flexible endoscopic surgical robots[J]. IEEE/ASME Transactions on Mechatronics,2020,25(1):371-382. [103] RAZBAN M,DARGAHI J,BOULET B. A sensor-less catheter contact force estimation approach in endovascular intervention procedures[C]//2018 IEEE/RSJ International. Conference on Intelligent Robots and Systems (IROS). Madrid,Spain,2018:2100-2106. [104] HEUNIS C M,BELFIORE V,VENDITTELLI M,et al. Reconstructing endovascular catheter interaction forces in 3D using multicore optical shape sensors[C]//2019 IEEE/RSJ International. Conference on Intelligent Robots and Systems (IROS). Macau,China,2019:5419-5425. [105] BARDARO S J,SWANSTRÖM L. Development of advanced endoscopes for natural orifice transluminal endoscopic surgery (NOTES)[J]. Minimally Invasive Therapy & Allied Technologies,2006,15(6):378-383. [106] YONEZAWA J,KAISE M,SUMIYAMA K,et al. A novel double-channel therapeutic endoscope ("R-scope") facilitates endoscopic submucosal dissection of superficial gastric neoplasms[J]. Endoscopy,2006,38(10):1011-1015. [107] ABBOTT D J,BECKE C,ROTHSTEIN R I,et al. Design of an endoluminal NOTES robotic system[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,2007:410-416. [108] SHANG J,NOONAN D P,PAYNE C,et al. An articulated universal joint based flexible access robot for minimally invasive surgery[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai,China:IEEE,2011:1147-1152. [109] LEE J,KIM J,LEE K K,et al. Modeling and control of robotic surgical platform for single-port access surgery[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago,IL,USA:IEEE,2014:3489-3495. [110] ROH S gon,LEE Y,LEE J,et al. Development of the SAIT single-port surgical access robot slave arm based on RCM Mechanism[C]//201537th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015:5285-5290. [111] 杨文龙. 面向单孔腔镜手术的连续型机械臂及其运动建模的研究[D]. 哈尔滨:哈尔滨工业大学,2016. YANG Wenlong. Research on continuous robotic arm and motion modeling for single-port laparoscopic surgery[D]. Harbin:Harbin Institute of Technology,2016. [112] 杨正馨. 面向单孔腔镜手术的连续型机械臂运动建模及力感知研究[D]. 哈尔滨:哈尔滨工业大学,2018. YANG Zhengxin. Research on motion modeling and force perception of continuous robotic arm for single-port laparoscopic surgery[D]. Harbin:Harbin Institute of Technology,2018. [113] XU K,ZHAO J,FU M. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy[J]. IEEE/ASME Transactions on Mechatronics,2015,20(5):2133-2145. [114] BERTHET-RAYNE P,GRAS G,LEIBRANDT K,et al. The i2Snake robotic platform for endoscopic surgery[J]. Annals of Biomedical Engineering,2018,46(10):1663-1675. [115] BERTHET-RAYNE P,LEIBRANDT K,KIM K,et al. Rolling-joint design optimization for tendon driven snake-like surgical robots[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:4964-4971. [116] NAGEOTTE F,ZORN L,ZANNE P,et al. Handbook of robotic and image-guided surgery[M]. New York:Elsevier,2020. [117] LUO X,SONG D,ZHANG Z,et al. A novel distal hybrid pneumatic/cable-driven continuum joint with variable stiffness capacity for flexible gastrointestinal endoscopy[J]. Advanced Intelligent Systems,2023,n/a(n/a):2200403. [118] SCHULER P J,HOFFMANN T K,DUVVURI U,et al. Demonstration of nasopharyngeal surgery with a single port operator-controlled flexible endoscope system:Flexible nasopharyngeal surgery[J]. Head & Neck,2016,38(3):370-374. [119] HONG W,FENG F,XIE L,et al. A two-segment continuum robot with piecewise stiffness for maxillary sinus surgery and its decoupling method[J]. IEEE/ASME Transactions on Mechatronics,2022,27(6):4440:4450. [120] HE X,VAN GEIRT V,GEHLBACH P,et al. IRIS:integrated robotic intraocular snake[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle,WA,USA:IEEE,2015:1764-1769. [121] RAZJIGAEV A,PANDEY A K,HOWARD D,et al. SnakeRaven:teleoperation of a 3D printed snake-like manipulator integrated to the RAVEN II surgical robot[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague,Czech Republic:IEEE,2021:5282-5288. [122] SEFATI S,HEGEMAN R,IORDACHITA I,et al. A dexterous robotic system for autonomous debridement of osteolytic bone lesions in confined spaces:human cadaver studies[J]. IEEE Transactions on Robotics,2022,38(2):1213-1229. [123] SEFATI S,HEGEMAN R,ALAMBEIGI F,et al. A surgical robotic system for treatment of pelvic osteolysis using an FBG-equipped continuum manipulator and flexible instruments[J]. IEEE/ASME Transactions on Mechatronics,2021,26(1):369-380 |
[1] | 陈薇,赵强. 基于虚拟阻抗的逆变器并联控制策略的研究[J]. 电气工程学报, 2018, 13(8): 7-11. |
[2] | 杜志超,欧阳丽,周春,胡娟. 新型孤岛微网主从控制策略研究[J]. 电气工程学报, 2015, 10(4): 53-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||