机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 164-175.doi: 10.3901/JME.2023.19.164
陈新, 陈云, 杨志军, 高健, 陈桪
收稿日期:
2023-04-01
修回日期:
2023-08-23
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
陈新(通信作者),男,1960年出生,博士,教授,博士研究生导师。主要研究方向为精密电子制造技术与装备、智能制造技术与系统。Email:chenx@gdut.edu.cn
基金资助:
CHEN Xin, CHEN Yun, YANG Zhijun, GAO Jian, CHEN Xun
Received:
2023-04-01
Revised:
2023-08-23
Online:
2023-10-05
Published:
2023-12-11
摘要: 后摩尔时代,多芯片高密度互连是电子器件制造的重要发展方向。针对高密度电子器件的高精高效加工制造难题,凝练了两大类共性技术挑战,包括互连基板等难加工材料海量微结构阵列的高精高效加工技术、执行机构高速高精操作的结构动态优化设计方法等;结合课题组近年来的研究实践,重点对四个细分方向的研究进展进行综述与讨论,包括多芯片高密度互连的海量微纳结构创成新机理、高精高效加工过程的形性协同调控方法与技术、高速机构柔性多体动力学建模与运动优化控制、高速精密运动平台设计与定位精度实时补偿理论与技术等;在此基础上,对相关技术的发展趋势进行分析与展望,将为高密度电子器件加工制造理论与技术体系的不断发展与完善提供重要参考。
中图分类号:
陈新, 陈云, 杨志军, 高健, 陈桪. 电子器件高精高效制造的若干关键技术研究进展[J]. 机械工程学报, 2023, 59(19): 164-175.
CHEN Xin, CHEN Yun, YANG Zhijun, GAO Jian, CHEN Xun. Research Advances in Several Key Technologies for High Precision and High Efficiency Manufacturing of Electronic Devices[J]. Journal of Mechanical Engineering, 2023, 59(19): 164-175.
[1] 陈新. 精密微电子封装装备的设计理论与系统开发[M]. 北京:机械工业出版社,2019. CHEN Xin. Design theory and system development of precision microelectronic packaging equipment[M]. Beijing:China Machine Press,2019. [2] 陈新,姜永军,谭宇韬,等. 面向电子封装装备制造的若干关键技术研究及应用[J]. 机械工程学报,2017,53(5):181-189. CHEN Xin,JIANG Yongjun,TAN Yutao,et al. Progress and application of key technologies on the electronic packaging equipment development[J]. Journal of Mechanical Engineering,2017,53(5):181-189. [3] 冯志华,胡海岩. 高速机构动力学研究进展[J]. 力学进展,2002,32(2):196-204. FENG Zhihua,HU Haiyan. Advances in dynamics of high-speed mechanisms[J]. Advances in Mechanics,2002,32(2):196-204 [4] ZHU Haiyue,PANG C,TEO T. Integrated servo-mechanical design of a fine stage for a coarse/fine dual-stage positioning system[J]. IEEE/ASME Transactions on Mechatronics,2016,21(1):329-338. [5] YAZAKI Y,FUJIMOTO H,HORI Y,et al. Method of shortening settling time using final state control for high-precision stage with decouplable structure of fine and coarse parts[J]. Electrical Engineering in Japan,2016,195(4):39-49. [6] ZHU Haiyue,PANG C,TEO T. A flexure-based parallel actuation dual-stage system for large-stroke nanopositioning[J]. IEEE Transactions on Industrial Electronics,2017,64(7):5553-5563. [7] YANG Miao,ZHANG Chi,HUANG Xiaolu,et al. A long-stroke nanopositioning stage with annular fexure guides[J]. IEEE/ASME Transactions on Mechatronics,2022,27(3):1570-1581. [8] LEE Hak-Jun,AHN Dahoon. Development of Air bearing stage using flexure for yaw motion compensation[J]. Actuators,2022,11(4),100. [9] KAWASUJI Y,FUJIMOTO J,KOBAYASHI M,et al. Deep ultraviolet excimer laser processing for the micro via hole on semiconductor package[J]. Journal of Laser Applications,2020,32(2):22076. [10] TANG Chaowei,LI Kuanming,YANG Mike,et al. Improving the dielectric breakdown field of silicon light-emitting-diode sub-mount by a hybrid nanosecond laser drilling strategy[J]. Microelectronics Reliability,2013,53(3):420-427. [11] JIANG Lan,WANG A,LI Bo,et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication:modeling,method,measurement and application[J]. Light-Science & Applications,2018,7(2):17134. [12] HUANG Ji,JIANG Lan,LI Xiaowei,et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification[J]. Nanophotonics,2019,8(5):869-878. [13] MA Yunlong,JIANG Lan,HU Jie,et al. Multifunctional 3D micro-nanostructures fabricated through temporally shaped femtosecond laser processing for preventing thrombosis and bacterial infection[J]. ACS Applied Materials & Interfaces,2020,12(15):17155-17166. [14] PAN Changji,JIANG Lan,SUN Jingya,et al. Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation[J]. Light:Science & Applications,2020,9(1):80. [15] HIDAI H,KUROKI Y,MATSUSAKA S,et al. Curved drilling via inner hole laser reflection[J]. Precision Engineering,2016,46:96-103. [16] DORING S,SZILAGYI J,RICHTER S,et al. Evolution of hole shape and size during short and ultrashort pulse laser deep drilling[J]. Optics Express,2012,20(24):27147-27154. [17] XIA Bo,JIANG Lan,LI Xiaowei,et al. Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling[J]. Optics Express,2015,23(21):27853-27864. [18] KONONENKO T,KONOV V,GARNOV S,et al. Dynamics of deep short pulse laser drilling:Ablative stages and light propagation[J]. Laser Physics,2001,11(3):343-351. [19] DIMOVA-MALINOVSKA D,SENDOVA-VASSILEVA M,TZENOV N,et al. Preparation of thin porous silicon layers by stain etching[J]. Thin Solid Films,1997,297(1):9-12. [20] LI X,BOHN P. Metal-assisted chemical etching in HF/H2O2 produces porous silicon[J]. Applied Physics Letters,2000,77(16):2572-2574. [21] LI Liyi,ZHAO Xueying,WONG Chingping. Deep etching of single- and polycrystalline silicon with high speed,high aspect ratio,high uniformity,and 3D complexity by electric bias-attenuated metal-assisted chemical etching (EMaCE)[J]. ACS Applied Materials & Interfaces,2014,6(19):16782-16791. [22] LI Liyi,WU Jiali,WONG Chingping. Wafer-level wet etching of high-aspect-ratio through silicon vias (TSVs) with high uniformity and low cost for silicon interposers with high-density interconnect of 3D packaging[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC),San Diego,CA,USA,2015,pp. 1417-1422. [23] CHEN Yun,CHEN Yanhui,LONG Junyu,et al. Achieving a sub-10 nm nanopore array in silicon by metal-assisted chemical etching and machine learning[J]. International Journal of Extreme Manufacturing,2021,3(3):35104. [24] CHEN Yun,ZHANG Cheng,LI Liyi,et al. Fabricating and controlling silicon zigzag nanowires by diffusion-controlled metal-assisted chemical etching method[J]. Nano Letters,2017,17(7):4304-4310. [25] CHEN Yun,LI Liyi,ZHANG Cheng,et al. Controlling kink geometry in nanowires fabricated by alternating metal-assisted chemical Etching[J]. Nano Letters,2017,17(2):1014-1019. [26] 陈云,李力一,麦锡全,等. 一种完全可控弯折角的折点纳米线阵列的制备方法:中国,201710028040.0[P]. 2017-11-07. CHEN Yun,LI Liyi,MAI Xiquan,et al. A method for the preparation of folded dot nanowire arrays with fully controllable bending angle:China,201710028040.0[P]. 2017-11-07. [27] 陈云,陈新,高健,等. 一种复杂三维结构微通道的加工方法:中国,201610034243.6[P]. 2017-03-08. CHEN Yun,CHEN Xin,GAO Jian,et al. A processing method for microchannels of complex 3D structures:China,201610034243.6[P]. 2017-03-08. [28] CHEN Yun,CHEN Xin,SHI Dachuang,et al Method for synchronous electroplating filling of differential vias and electroplating device implementing same[P]. 2019-11-26. [29] CHEN Xin,CHEN Yun,SHI Dachuang,et al. Method for synchronous wet etching processing of differential microstructures[P]. 2019-11-05. [30] XU Y,ADACHI S. Properties of light-emitting porous silicon formed by stain etching in HF∕KIO3 solution under light illumination[J]. Journal of Applied Physics,2008,103(10):103512. [31] LEHMANN V,FOLL H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon[J]. Journal of the Electrochemical Society,1990,137(2):653-659. [32] XU Y,ADACHI S. Properties of light-emitting porous silicon photoetched in aqueous HF/FeCl3 solution[J]. Journal of Applied Physics,2007,101(10):103509. [33] FOLL H. Properties of silicon-electrolyte junctions and their application to silicon characterization[J]. Applied Physics A Solids and Surfaces,1991,53(1):8-19. [34] SHI Dachuang,CHEN Yun,LI Zijian,et al. Anisotropic charge transport enabling high-throughput and high-aspect-ratio wet etching of silicon carbide[J]. Small Methods,2022,6(8):2200329. [35] CHEN Yun,LI Zijian,SHI Dachuang,et al. Silicon carbide nano-via arrays fabricated by double-sided metal-assisted photochemical etching[J]. Materials Today Communications,2023,35:105519. [36] WANG Fuliang,CHEN Yun. Modeling study of thermosonic flip chip bonding process[J]. Microelectronics Reliability,2012,52(11):2749-2755. [37] WANG Fuliang,HAN Lei,ZHONG Jue. Stress-induced atom diffusion at thermosonic flip chip bonding interface[J]. Sensors and Actuators A:Physical,2009,149(1):100-105. [38] WANG Fuliang,CHEN Yun,HAN Lei. Ultrasonic vibration at thermosonic flip-chip bonding interface[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology,2011,1(6):852-858. [39] LI Junhui,WANG Fuliang,HAN Lei,et al. Theoretical and experimental analyses of atom diffusion characteristics on wire bonding interfaces[J]. Journal of Physics D:Applied Physics,2008,41(13):135303. [40] 韩雷,王福亮,李军辉,等. 微电子封装超声键合机理与技术[M]. 北京:科学出版社,2014. HAN Lei,WANG Fuliang,LI Junhui,et al. Microelectronics packaging ultrasonic bonding mechanism and technology[M]. Beijing:Science Press,2014. [41] 韩雷,李军辉,王福亮. 微电子制造先进封装进展[M]. 长沙:中南大学出版社,2012. HAN Lei,LI Junhui,WANG Fuliang,et al. Progress of advanced packaging microelectronics manufacturing[M]. Changsha:Central South University Press,2012 [42] WANG Fuliang,ZHAO Zhipeng,WANG Feng,et al. A novel model for through-silicon via (TSV) filling process simulation considering three additives and current density effect[J]. Journal of Micromechanics and Microengineering,2017,27(12):125017. [43] WANG Fuliang,ZHAO Zhipeng,NIE Nantian,et al. Dynamic through-silicon-via filling process using copper electrochemical deposition at different current densities[J]. Scientific Reports,2017,7(1):46639. [44] OSTHOLT R,AMBROSIUS N,KRUGER R. High speed through glass via manufacturing technology for interposer[C]//Proceedings of the 5th Electronics System-integration Technology Conference (ESTC),Helsinki,Finland,2014:1-3. [45] SRIDHARAN V,MIN S,SUNDARANM V,et al. Design and fabrication of bandpass filters in glass interposer with through-package-vias (TPV)[M]. 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA. 2010:524-529. [46] CHAE J,GIANCHINO J,NAJAFI K. Fabrication and characterization of a wafer-level MEMS vacuum package with vertical feedthroughs[J]. Journal of Microelectromechanical Systems,2008,17(1):193-200. [47] ZHANG Jinwen,JIANG Wei,WANG Xin,et al. Design and fabrication of high performance wafer-level vacuum packaging based on glass-silicon-glass bonding techniques[J]. Journal of Micromechanics and Microengineering,2012,22(12):125022. [48] BRUSBERG L,SCHRODER H,RANZINGER C,et al. Thin glass based electro-optical circuit board (EOCB) with through glass vias,gradient-index multimode optical waveguides and collimated beam mid-board coupling interfaces[C]//2015 IEEE 65th Electronic Components and Technology Conference(ECTC), USA. 2015:789-798. [49] MA Shenglin,REN Kuili,XIA Yanming,et al. Process development of a new TGV interposer for wafer level package of inertial MEMS device[C]//201617th ICEPT,China. 2016:983-987. [50] SHI Tailong,BUCH C,SMET V,et al. First Demonstration of panel glass fan-out (GFO) packages for high I/O density and high Frequency multi-chip integration[C]//2017 IEEE 67th ECTC,USA. 2017:41-46. [51] 吴亚祥,喻甜,徐佳帅,等. 面向5G/6G高速通信的基于先进封装与微纳制造技术的高效能太赫兹阵列天线[R].第十五届中国研究生电子设计竞赛技术,2020. WU Yaxiang,YU Tian,XU Jiashuai,et al. High performance terahertz array antenna based on advanced packaging and micro-nano fabrication technology for 5G/6G high speed communication[R]. The 15th China Postgraduate Electronic Design Competition Technology,2020 [52] CHEN Yun,CHEN Xin,SHI Dachuang,et al. Method of processing nano- and micro-pores:US10427936B2[P]. 2019-10-01. [53] 陈云,李彪,赖声宝,等. 一种基于交变电场辅助加工玻璃通孔的方法及蚀刻装置:中国,202210404132.5[P]. 2022-12-06. CHEN Yun,LI Biao,LAI Shengbao,et al. A method and etching device based on alternating electric field assisted processing of glass through-hole:China,202210404132.5[P]. 2022-12-06. [54] LEE S,LEE H,PARK G. Nonlinear dynamic response topology optimization using the equivalent static loads method[J]. Computer Methods in Applied Mechanics and Engineering,2015,283:956-970. [55] KANG B S,PARK G J,ARORA J S. Optimization of flexible multibody dynamic systems using the equivalent static load method[J]. AIAA Journal,2005,43(4):846-852. [56] SHIN M,PRK K,PARK G. Optimization of structures with nonlinear behavior using equivalent loads[J]. Computer Methods in Applied Mechanics and Engineering,2007,196(4-6):1154-1167. [57] LEE H,KIM Y,PARK G,et al. Structural optimization of a joined wing using equivalent static loads[J]. Journal of Aircraft,2007,44(4):1302-1308. [58] CHOI W,PARK G. Structural optimization using equivalent static loads at all time intervals[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(19-20):2077-2094. [59] PARK G,KANG B. Validation of a structural optimization algorithm transforming dynamic loads into equivalent static loads[J]. Journal of Optimization Theory and Applications,2003,118(1):191-200. [60] MECKL P,ARESTIDES P,WOODS M C. Optimized S-curve motion profiles for minimum residual vibration[C]//Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207),Philadelphia,PA,USA,1998,5:2627-2631. [61] ZHENG Kujung,CHENG Li. Adaptive s-curve acceleration/deceleration control method[C]//20087th World Congress on Intelligent Control and Automation,Chongqing,China,2008:2752-2756. [62] NGUYEN K,NG T,CHEN I. On algorithms for planning S-curve motion profiles[J]. International Journal of Advanced Robotic Systems,2008,5(1):11. [63] CHEN Xin,BAI Youdun,YANG Zhijun,et al. A precision-positioning method for a high-acceleration low-load mechanism based on optimal spatial and temporal distribution of inertial energy[J]. Engineering,2015,1(3):391-398. [64] YANG Zhijun,CHEN Xin,KELLY R. A topological optimization approach for structural design of a high-speed low-load mechanism using the equivalent static loads method[J]. International Journal for Numerical Methods in Engineering,2012,89(5):584-598. [65] YANG Zhijun,BAI Youdun,CHEN Xin,et al. The residual vibration impact on the multiple target positioning time for array operation[C]//2016 IEEE International Conference on Information and Automation (ICIA),Ningbo,China,2016:50-55. [66] ZHANG Lanyu,GAO Jian,CHEN Xin,et al. A rapid vibration reduction method for macro-micro composite precision positioning stage[J]. IEEE Transactions on Industrial Electronics,2017,64(1):401-411. [67] 陈新,白有盾,杨志军,等. 高速轻载机构非线性动态系统结构拓扑优化方法:中国,201510738273.0[P]. 2019-06-25. CHEN Xin,BAI Youdun,YANG Zhijun,et al. A topology optimisation method for the structure of nonlinear dynamic systems of high-speed light-loaded mechanisms:China,201510738273.0[P]. 2019-06-25. [68] 陈新,白有盾,杨志军,等. 基于主频能量时域最优分布的非对称变加速度规划方法:中国,201410255068.4[P]. 2016-01-20. CHEN Xin,BAI Youdun,YANG Zhijun,et al. An asymmetric variable acceleration planning method based on the time-domain optimal distribution of primary frequency energy:China,201410255068.4[P]. 2016-01-20. [69] SHARON A,HARDT D. Enhancement of robot accuracy using endpoint feedback and a macro-micro manipulator system[C]//1984 American Control Conference,San Diego,CA,USA,1984:1836-1845. [70] SHARON A,HOGAN N,HARDT D. The macro/micro manipulator:An improved architecture for robot control[J]. Robotics and Computer-Integrated Manufacturing,1993,10(3):209-222. [71] SONKHAM S,PINSOPON U,CHATLATANAGULCHAI W. A model-reference sliding mode for dual-stage actuator servo control in HDD[C]//201411th International Conference on Electrical Engineering/Electronics,Computer,Telecommunications and Information Technology (ECTI-CON),Nakhon Ratchasima,Thailand,2014:1-6. [72] HUANG Deqing,VENKATARAMANAN V,XU Jianxin,et al. Contact-induced vibration in dual-stage hard disk drive servo systems and its compensator design[J]. IEEE Transactions on Industrial Electronics,2014,61(8):4052-4060. [73] RAHMAN M,AL M,YAO K. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system[J]. Review of Scientific Instruments,2015,86(8):85002. [74] XU Qingsong. Design and development of a flexure-based dual-stage nanopositioning system with minimum interference behavior[J]. IEEE Transactions on Automation Science and Engineering,2012,9(3):554-563. [75] HU Bin,PANG C,WAN J,et al. Earliest switch-on of dual-stage actuation in hard disk drives[J]. Microsystem Technologies,2016,22(6):1267-1273. [76] 蒋毅,朱煜,杨开明,等. 超精密六自由度微动台耦合动力学建模及分析[J]. 中国电机工程学报,2014,34(30):5451-5457. JIANG Yi,ZHU Yu,YANG Kaiming,et al. Coupled dynamic modeling and analysis of ultra-precision 6-DOF fine stage[J]. Proceedings of The CSEE,2014,34(30):5451-5457. [77] FESPERMAN R,OZTURK O,HOCKEN R,et al. Multi-scale alignment and positioning system-MAPS[J]. Precision Engineering,2012,36(4):517-537. [78] ZHANG Lufan,LONG Zhili,CAI Jiandong,et al. Active vibration isolation of macro-micro motion stage disturbances using a floating stator platform[J]. Journal of Sound and Vibration,2015,354:13-33. [79] ZHANG Lanyu,GAO Jian,CHEN Xin. A rapid dynamic positioning method for settling time reduction through a macro-micro composite stage with high positioning accuracy[J]. IEEE Transactions on Industrial Electronics,2018,65(6):4849-4860. [80] CHEN Xin,YANG Zhijun,BAI Youdun,et al. Common-stator macro/micro integrated precision motion one-dimensional linear motor assembly:US 201701.26112A1[P]. 2019-03-19. [81] 陈新,杨志军,白有盾,等. 直线电机共定子双驱动宏微一体化高速精密运动一维平台:中国,201410696217.0[P]. 2017-05-10. CHEN Xin,YANG Zhijun,BAI Youdun,et al. Linear motor common stator dual drive macro-micro integrated high speed precision motion one dimensional stage:China,201410696217.0[P]. 2017-05-10. [82] 白有盾,杨志军,陈新,等. 异构电机共定子多驱动宏微一体化高速精密运动二维平台:中国,201410696821.3[P]. 2017-06-30. BAI Youdun,YANG Zhijun,CHEN Xin,et al. Heterogeneous motor common stator multi-drive macro-micro integration for high-speed precision motion 2D platforms:China,201410696821.3[P]. 2017-06-30. [83] 白有盾,陈新,杨志军. 刚柔分级并联驱动宏微复合运动平台设计[J]. 中国科学:技术科学,2019,49(6):669-680. BAI Youdun,CHEN Xin,YANG Zhijun,et al. Rigid-flexible graded parallel drive macro-micro composite motion stage design[J]. Science China Technological Sciences,2019,49(6):669-680. [84] 陈建魁,张舟,尹周平,等. 一种柔性显示多层结构功能层喷印制备方法和系统:中国,202210313108.0[P]. 2023-01-06. CHEN Jiankui,ZHANG Zhou,YIN Zhouping,et al. A flexible display multilayer structure functional layer printing preparation method and system:China,202210313108.0[P]. 2023-01-06. [85] 陈建魁,黄萌萌,尹周平,等. 一种用于电流体动力喷印的轨迹诱导沉积控制系统及方法:中国,201910917396.9[P]. 2020-09-18. CHEN Jiankui,HUANG Mengmeng,YIN Zhouping,et al. A trajectory-induced deposition control system and method for electrohydrodynamic printing:China,201910917396.9[P]. 2020-09-18. [86] 陈新,李宏城,汤晖,等. 一种Mini/micro芯片柔性飞行刺晶装置:中国,202210152777.4[P]. 2022-02-18. CHEN Xin,LI Hongcheng,TANG Hui,et al. A Mini/micro chip flexible flight stabbing crystal device:China,202210152777.4[P]. 2022-02-18. [87] 杨志军,白有盾,李瑞奇,等. 一种芯片巨量转移方法及芯片巨量转移设备:中国,202111536055.0[P]. 2022-02-25. YANG Zhijun,BAI Youdun,LI Ruiqi,et al. A chip macro transfer method and a chip macro transfer apparatus:China,202111536055.0[P]. 2022-02-25. |
[1] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[2] | 傅杨, 张跃, 毛颖, 唐小华, 陈祖高, 徐和武, 杨雨沛, 高斌, 田贵云. 基于Feature Boosting的管道电磁内检测多传感信号缺陷解析算法[J]. 机械工程学报, 2024, 60(20): 51-67. |
[3] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[4] | 张志勇, 王宇翔, 黄彩霞, 吴悠, 杜荣华. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报, 2024, 60(20): 240-250. |
[5] | 廖贵文, 张毅, 魏凯, 刘小君, 王伟. 受限润滑界面液固二相流场结构与颗粒运动行为耦合特性分析[J]. 机械工程学报, 2024, 60(20): 351-360. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 王德祥, 张宇, 江京亮, 刘新福, 刘国梁. 离子液基和棕榈油基纳米流体在镍基高温合金微量润滑磨削界面的摩擦学机理研究[J]. 机械工程学报, 2024, 60(19): 159-171. |
[8] | 李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186. |
[9] | 王晓宇, 魏兆成, 王学勤, 王栋. 整体叶轮双列开槽五轴插铣加工的残留材料建模[J]. 机械工程学报, 2024, 60(19): 310-317. |
[10] | 王高见, 刘丽, 康丹丹, 叶延洪, 邓德安. Ni含量对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2024, 60(18): 163-172. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[13] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[14] | 张禹泽, 赵竞夫, 赵振伟, 康荣杰, 戴建生, 宋智斌. 面向多关节训练的并联柔索驱动下肢康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 111-122. |
[15] | 梁旭, 张建勇, 李国涛, 苏婷婷, 何广平, 侯增广. 面向骨折复位手术的冗余并联机构:设计、建模与性能分析[J]. 机械工程学报, 2024, 60(17): 133-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||