[1] LIU Y G,ZHANG X C,WANG X L,et al. Failure analysis on friction and wear of tool joints[J]. Materials Science Forum,2020,993:1118-1123. [2] BAI X Q,XIAO H L,ZHANG L. The condition monitoring of large slewing bearing based on oil analysis method[J]. Key Engineering Materials,2011,474:716-719. [3] JAYASWAL P,WADHWANI A K,MULCHANDANI K B. Machine fault signature analysis[J]. International Journal of Rotating Machinery,2008,583982:1-10. [4] DONG G M,CHEN J. Noise resistant time frequency analysis and application in fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing,2012,33:212-236. [5] SAGE I,BOURHILL G. Triboluminescent materials for structural damage monitoring[J]. Journal of Materials Chemistry,2001,11:231-245. [6] BIELEFELDT B R,HOCHHALTER J D,HARTL D J. Shape memory alloy sensory particles for damage detection:Experiments,analysis,and design studies[J]. Structural Health Monitoring,2017,17:777-814. [7] CHEN Y F,ZHANG H,ZHANG J,et al. Failure assessment of X80 pipeline with interacting corrosion defects[J]. Engineering Failure Analysis,2015,47:67-76. [8] INMAN D J,CARNEIRO S H S. Smart structures,structural health monitoring and crack detection[M]. Philadelphia:Society for Industrial and Applied Mathematics,2003. [9] RIZZO P,NI Y Q,ZHU J Y. Structural health monitoring for civil structures:from the lab to the field[J]. Advances in Civil Engineering,2010,165132:1. [10] YUN C B,MIN J. Smart sensing,Monitoring,and damage detection for civil infrastructures[J]. KSCE Journal of Civil Engineering,2010,15:1-14. [11] BASHEER A. Advances in the smart materials applications in the aerospace industries[J]. Aircraft Engineering and Aerospace Technology,2020,92:1027-1035. [12] HEEG B,CLARKE D R. Non-destructive thermal barrier coating (TBC) damage assessment using laser-induced luminescence and infrared radiometry[J]. Surface and Coatings Technology,2005,200:1298-1302. [13] 魏汉,王强,惠德昌,等. 压电机电阻抗结构损伤监测机理研究[J]. 压电与声光,2014,36(4):667-670. WEI Han,WANG Qiang,HUI Dechang,et al. Study on damage monitoring mechainsm of piezoelectric impedance structure[J]. Piezoelectrics & Acoustooptics,2014,36(4):667-670. [14] 薛子凡,邢志国,王海斗,等. 面向结构健康监测的压电传感器综述[J]. 材料导报,2017,31(17):122-132. XUE Zifan,XING Zhiguo,WANG Haidou,et al. A review of piezoelectric sensors for structural health monitoring[J]. Materials Reports,2017,31(17):122-132. [15] HAMZELOO S R,SHAMSHIRSAZ M,REZAZI S M. Damage detection on hollow cylinders by electro-mechanical impedance method:Experiments and finite element modeling[J]. Comptes Rendus Mecanique,2012,340:668-677. [16] 张亚楠,刘亚冬,刘兵飞. 形状记忆合金在复合材料损伤监测中的应用[J]. 复合材料学报,2021,38(4):1177-1191. ZHANG Yanan,LIU Yadong,LIU Bingfei. Application of shape memory alloy in damage monitoring of composite materials[J]. Acta Materiae Compositae Sinica,2021,38(4):1177-1191. [17] WU X D,FAN Y Z,WU J S. A study on the variations of the electrical resistance for NiTi shape memory alloy wires during the thermo-mechanical loading[J]. Materials & Design,2000,21(6):511-515. [18] STACHIV I,ALARCON E,LAMAC M. Shape memory alloys and polymers for MEMS/NEMS applications:Review on recent findings and challenges in design,preparation,and characterization[J]. Metals,2021,11:415. [19] KWUN H,HOLT A E. Feasibility of under-lagging corrosion detection in steel pipe using the magnetostrictive sensor technique[J]. NDT & E International,1995,28:211-214. [20] HE Y,WANG S C,WALSH F C,et al. The monitoring of coating health by in situ luminescent layers[J]. RSC Advances,2015,5:42965-42970. [21] HE L,WU X Y,LI W S,et al. Self-sensing tribological coating with phosphor particles for wear indicator[J]. Rare Metals,https://doi.org/10.1007/s12598-018-1177-9. [22] SALEE A,AONO Y,HIRATA A. Development of amorphous carbon coating with luminescent silica/CdSe/ZnS quantum dots underlayer for wear monitoring[J]. Precision Engineering,2014,38:673-679. [23] GENTLEMAN M M,CLARKE D R. Concepts for luminescence sensing of thermal barrier coatings[J]. Surface and Coatings Technology,2004,188-189:93-100. [24] DRAMICANIN M D. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review[J]. Methods and Applications in Fluorescence,2016,4(4):78-93. [25] WU H Y,LI Y,WANG Y,et al. Study on preparation,microstructure and luminescent properties of Er-ZrO2 layer[J]. Journal of Rare Earths,2016,34:958-962. [26] MURATORE C,CLARKE D R,JONES J G,et al. Smart tribological coatings with wear sensing capability[J]. Wear,2008,265:913-920. [27] ELDRIDGE J I,BENCIC T J. Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence[J]. Surface and Coatings Technology,2006,201:3926-3930. [28] WANG H D,MA G Z,XU B S,et al. Design and application of friction pair surface modification coating for remanufacturing[J]. Friction,2017,5:351-360. [29] RICE J A,MECHITOV K A,SIM S H,et al. Enabling framework for structural health monitoring using smart sensors[J]. Structural Control and Health Monitoring,2011,18:574-587. [30] LIU M B,WANG X H,LIU Q D,et al. Application of smart coating sensor in crack detection for aircraft[J]. Applied Mechanics and Materials,2012,152-154:554-559. [31] LIU M B,LI B B,LI J T,et al. Smart coating sensor applied in crack detection for aircraft[J]. Applied Mechanics and Materials,2013,330:383-388. [32] HOU B,HE Y T,CUI R H,et al. Crack monitoring method based on Cu coating sensor and electrical potential technique for metal structure[J]. Chinese Journal of Aeronautics,2015,28(3):932-938. [33] AHMED S,DOSHI S,SCHUMACHER T,et al. Development of a novel integrated strengthening and sensing methodology for steel structures using CNT-based composites[J]. Journal of Structural Engineering,2017,143(4):1-10. [34] AHMED S,THOSTENSON E T,SCHUMACHER T,et al. Integration of carbon nanotube sensing skins and carbon fiber composites for monitoring and structural repair of fatigue cracked metal structures[J]. Composite Structures,2018,203:182-192. [35] AHMED S,SCHUMACHER T,THOSTENSON E T,et al. Performance evaluation of a carbon nanotube sensor for fatigue crack monitoring of metal structures[J]. Sensors (Basel,Switzerland),2020,20(16):4383-4398.. [36] LAFLAMME S,KOLLOSCHE M,CONNOR J J,et al. Robust flexible capacitive surface sensor for structural health monitoring applications[J]. Journal of Engineering Mechanics,2013,139:879-885. [37] LAFLAMME S,SALEEM H S,VASAN B K,et al. Soft elastomeric capacitor network for strain sensing over large surfaces[J]. IEEE/ASME Transactions on Mechatronics,2013,18:1647-1654. [38] KHARROUB S,LAFLAMME S,SONG C H,et al. Smart sensing skin for detection and localization of fatigue cracks[J]. Smart Materials and Structures,2015,24(6):1-16. [39] GIURGIUTIU V,XU B,CHAO Y,et al. Smart sensors for monitoring crack growth under fatigue loading conditions[J]. Smart Structures and Systems,2006,2:101-113 [40] LIU S D,DU C L,ZHANG J L. Intelligent diagnosis of structural cracks with optimized sensing network[J]. Microsystem Technologies,2013,19:1653-1660. [41] HE JJ, HUO H D, GUAN X F, et al. A lamb wave quantification model for inclined cracks with experimental validation[J]. Chinese Journal of Aeronautics, 2021, 34(2):601-611. [42] KIM S B,SOHN H. Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials[J]. Smart Materials and Structures,2007,16:2375-2387. [43] RAN Y M,HE J J,DONG B L,et al. Assessment of reliability performance of fatigue crack detection by intelligent coating monitoring and piezoelectric sensors[C]//International Conference on Sensing,Diagnostics,Prognostics,and Control (SDPC),China,2017:482-487. [44] ZHANG Y F. Piezoelectric paint sensor for real-time structural health monitoring[J]. Proceedings of SPIE-The International Society for Optical Engineering,2005,5765:1095-1103. [45] ZHANG Y F. In Situ Fatigue crack detection using piezoelectric paint sensor[J]. Journal of Intelligent Material Systems and Structures,2016,17:843-852. [46] MENNA C,AURICCHIO F,ASPRONE D. Applications of shape memory alloys in structural engineering[M]. New York:Elsevier Ltd,2015. [47] 杜彦良,聂景旭,赵长占. 构件裂纹的探测和主动控制的一种新方法[J]. 航空学报,1993,14(7):A337-A341. DU Yanliang,NIE Jingxu,ZHAO Changzhan. A new method for crack-detecting and active control[J]. Acta Aeronautica Et Astronautica Sinica,1993,14(7):A337-A341. [48] LESER W P,NEWMAN J A,HOCHHALTER J D,et al. Embedded Ni-Ti particles for the detection of fatigue crack growth in AA7050[J]. Fatigue & Fracture of Engineering Materials & Structures,2016,39:686-695. [49] CHANG H,LEE C,PARK S. Self-monitoring and self-healing bolted joints using shape memory alloy[C]//Proceedings of the 28th International Symposium on Automation and Robotics in Construction. Seoul,2011:824-825. [50] ZHU H P,LUO H,AI D,et al. Mechanical impedance-based technique for steel structural corrosion damage detection[J]. Measurement,2016,88:353-359. [51] DHOLE G S,GUNASEKARAN G,GHORPADE T,et al. Smart acrylic coatings for corrosion detection[J]. Progress in Organic Coatings,2017,110:140-149. [52] MAIA F,TEDIM J,BASTOS A C,et al. Nanocontainer-based corrosion sensing coating[J]. Nanotechnology,2013,24:415-502. [53] LIU G,WHEAT H G. Use of a fluorescent indicator in monitoring underlying corrosion on coated aluminum 2024-T4[J]. Journal of the Electrochemical Society,2009,156:160-166. [54] ZHANG J,FRANKEL G S. Corrosion-sensing behavior of an acrylic-based coating system[J]. Corrosion,1999,55(10):957-967. [55] KUMAR A,STEPHENSON L D,MURRAY J N. Self-healing coatings for steel[J]. Progress in Organic Coatings,2006,55:244-253. [56] SU W M,ZHANG J P,ZHANG J F,et al. Microstructure of HVOF-sprayed Ag-BaF2 CaF2-Cr3C2-NiCr coating and its tribological behavior in a wide temperature range (25℃ to 800℃)[J]. Ceramics International,2021,47:865-876. [57] AUGUSTYNIAK A,TSAVALAS J,MING W H. Early detection of steel corrosion via "Turn-On" fluorescence in smart epoxy[J]. ACS Applied Materials & Interfaces,2009,1(1):2618-2623. [58] SIBI M P,ZONG A G. Determination of corrosion on aluminum alloy under protective coatings using fluorescent probes[J]. Progress in Organic Coatings,2003,47(1):8-15. [59] AFRASIABI A,SAREMI M,KOBAYASHI A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ,YSZ+Al2O3 and YSZ/Al2O3[J]. Materials Science and Engineering A,2008,478:264-269. [60] ELDRIDGE J I,SINGH J,WOLFE D E. Erosion-indicating thermal barrier coatings using luminescent sublayers[J]. Journal of the American Ceramic Society,2006,89:3252-3254. [61] 梁秀兵,崔辛,胡振峰,等. 新型仿生智能材料研究进展[J]. 科技导报,2018,36(22):131-144. LIANG Xiubing,CUI Xin,HU Zhenfeng,et al. Research progress in novel bio-inspired intelligent materials[J]. Science & Technology Review,2018,36(22):131-144. [62] 杨正岩,张佳奇,高东岳,等. 航空航天智能材料与智能结构研究进展[J]. 航空制造技术,2017,(17):36-48. YANG Zhengyan,ZHANG Jiaqi,GAO Dongyue,et al. Advance of aerospace smart material and structure[J]. Aeronautical Manufacturing Technology,2017,(17):36-48. [63] 李沨,张双喜,华霖. 船舶舵机智能运维系统的设计与实现[J]. 上海船舶运输科学研究所学报,2022,45(3):38-43. LI Feng,ZHANG Shuangxi,HUA Lin. Design and implementation of intelligent management system for ship steering gear maintenance[J]. Journal of Shanghai Ship and Shipping Research Institute,2022,45(3):38-43. [64] 滕洪钊,邓朝晖,吕黎曙,等. 多传感器信息融合的加工过程状态监测研究[J]. 机械工程学报,2022,58(6):26-41. TENG Hongzhao,DENG Zhaohui,LÜ Lishu,et al. Research of process condition monitoring based on multi-sensor information fusion[J]. Journal of Mechanical Engineering,2022,58(6):26-41. |