[1] 郭则庆,王杨,姜孝海,等. 小口径武器膛口流场可视化实验[J]. 实验流体力学, 2012, 26(2):46-50. GUO Zeqing, WANG Yang, JIANG Xiaohai, et al. Visual experiment on the muzzle flow field of the small caliber gun[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2):46-50. [2] MOUMEN A, GROSSEN J, NDINDABAHIZI I, et al. Visualization and analysis of muzzle flow fields using the background- oriented schlieren technique[J]. Journal of Visualization, 2020, 23(3):409-423. [3] MOHAPATRA S, MOHANTY P N, et al. Background oriented schlieren (BOS) technique:An effective flow visualization tool for intermediate ballistics[C]//International Conference on Range Technology, 2019. [4] 李子杰, 王浩. 膛口初始流场对火药燃气射流的影响[J]. 含能材料, 2017, 25(4):282-290. LI Zijie, WANG Hao. Effect of precursor flow field of muzzle on the combustion gas jet flow of gun propellant[J]. Chinese Journal of Energetic Materials, 2017, 25(4):282-290. [5] 徐达,罗业,张杰,等. 侧孔参数对炮口制退器流场结构及超压的影响研究[J]. 火炮发射与控制学报, 2020, 41(4):32-37, 69. XU Da, LUO Ye, ZHANG Jie, et al. Effect of side hole parameters on structure and overpressure of muzzle brake flow field[J]. Journal of Gun Launch & Control, 2020, 41(4):32-37, 69. [6] 赵欣怡,周克栋,赫雷,等. 带制退器的膛口射流噪声数值模拟与实验研究[J]. 爆炸与冲击, 2019, 39(10):51-59. ZHAO Xinyi, ZHOU Kedong, HAO Lei, et al. Numerical simulation and experimental study on jet noise from a small caliber rifle with a muzzle brake[J]. Explosion and Shock Waves, 2019, 39(10):51-59. [7] XUE X C, YU Y Y, ZHANG Q. Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber[J]. Journal of Hydrodynamics, 2013, 25(5):763-771. [8] XUE X C, YU Y Y, ZHAO J J. Study on draining off water mechanism and interaction characteristic of high-temperature and high-pressure combustion-gas jets with the water[J]. Applied Thermal Engineering, 2018, 143:570-581. [9] ZHAO J J, YU Y G. The interaction between multiple high pressure combustion gas jets and water in a water-filled vessel[J]. Applied Ocean Research, 2016, 61:175-182. [10] 金成柱,缪尧,潘华辰. 结合水下注气系统的高压水射流清洗技术的研究[J]. 中国机械工程, 2016, 27(6):717-720. JIN Chengzhu, MIU Yao, PAN Huachen. Research on high pressure water jet cleaning technology with underwater gas injection system[J]. China Mechanical Engineering, 2016, 27(6):717-720. [11] 李金霞,王超,丁红兵. 低含气率气液两相流涡街特性研究[J]. 机械工程学报, 2017, 53(20):161-168. LI Jinxia, WANG Chao, DING Hongbing. Vortex street characteristics of two-phase flow with low gas fraction[J]. China Mechanical Engineering, 2017, 53(20):161-168. [12] GAO J G, CHEN Z H, HUANG Z G, et al. Numerical investigations on the oblique water entry of high-speed projectiles[J]. Applied Mathematics and Computation, 2019, 362:1234567. [13] 陈诚,袁绪龙,刘传龙. 超空泡模型对固态介质侵彻及影响因素实验研究[J]. 兵工学报, 2015, 36(2):299-304. CHEN Cheng, YUAN Xulong, LIU Chuanlong. Experimental investigation on the supercavitation models penetrating into solid medium and the influence factors[J]. Acta Armamentarii, 2015, 36(2):299-304 [14] 郝常乐,党建军,陈长盛,等. 基于双向流固耦合的超空泡射弹入水研究[J]. 力学学报, 2022, 54(3):678-687. HAO Changle, DANG Jianjun, CHEN Changsheng, et al. Numerical study on water entry process of supercavitating projectile by considering bidirectional fluid structure interaction effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3):678-687. [15] 张京辉,余永刚. 弹道枪水下全淹没式发射膛口流场演化特性的数值模拟研究[J]. 兵工学报, 2020, 41(3):471-480. ZHANG Jinghui, YU Yonggang. Numerical investigation on evolutionary characteristics of muzzle flow field of ballistic gun during underwater submerged firing[J]. Acta Armamentarii, 2020, 41(3):471-480. [16] 张欣尉,余永刚. 水深对机枪密封式膛口流场影响的数值分析[J]. 船舶力学, 2019, 23(5):558-565. ZHANG Xinwei, YU Yonggang. Numerical analysis of influence of water depth on flow field around sealed muzzle of underwater machine gun[J]. Journal of Ship Mechanics, 2019, 23(5):558-565. |