• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (14): 339-351.doi: 10.3901/JME.2023.14.339

• 交叉与前沿 • 上一篇    下一篇

扫码分享

一种实际多约束环境下的云制造服务组合动态自适应重构方法

王彦凯1,2, 王时龙1, 杨波1, 王四宝1   

  1. 1. 重庆大学机械传动国家重点实验室 重庆 400044;
    2. 清华大学软件学院 北京 100084
  • 收稿日期:2022-01-31 修回日期:2022-12-18 出版日期:2023-07-20 发布日期:2023-08-16
  • 通讯作者: 王时龙(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为云制造、智能制造自动化、专用数控机床。E-mail:slwang@cqu.edu.cn
  • 作者简介:王彦凯,男,1990年出生,博士,助理研究员。主要研究方向为智能制造、资源优化配置、复杂网络协同优化、大数据分析与应用、机器学习算法、人工智能物联网AIoT。E-mail:wyk2022@mail.tsinghua.edu.cn
  • 基金资助:
    国家科技创新2030“新一代人工智能”重大(2018AAA0101804)、中国博士后科学基金(2022M721830)和重庆市技术创新与应用发展重点(cstc2020jscx-dxwt BX0044)资助项目。

Dynamic Adaptive Reconfiguration Method for Cloud Manufacturing Service Composition in Practical Multi-constraint Environment

WANG Yankai1,2, WANG Shilong1, YANG Bo1, WANG Sibao1   

  1. 1. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044;
    2. School of Software, Tsinghua University, Beijing 100084
  • Received:2022-01-31 Revised:2022-12-18 Online:2023-07-20 Published:2023-08-16

摘要: 以往云制造服务组合(Cloud manufacturing service composition, CMSC)优化是在制造服务少异常或约束的条件下进行的,这使得现有模型及方法无法适用于多种实际约束下的云制造服务组合优化,更无法在其执行过程出现服务异常时,对CMSC原执行路径进行自适应重构调整。为此,考虑云制造服务组合执行过程中不可忽视的原始CMSC执行路径强制时间约束、制造服务占用时间约束和制造服务强耦合约束,以CMSC的加工质量、成本、服务质量为优化目标,提出一种制造云服务出现异常时实际约束下的服务组合自适应重构调整模型(Cloud manufacturing service composition adaptive reconfiguration, CMSCAR)。为求解该模型,在详细分析所求问题的本质特征的基础上,集成多种优化策略,提出一种基于哈里斯鹰优化算法的服务组合动态重构算法(Service composition dynamic reconfiguration harris hawks optimization, SCDRHHO)。数值算例和应用案例表明,相比粒子群算法(Particle swarm optimization, PSO)、灰狼优化算法(Grey wolf optimizer, GWO)和蝠鲼觅食优化算法(Manta ray foraging optimization, MRFO)等对比算法,所提出的SCDRHHO能够在制造云服务异常出现时在多约束下对正在执行的服务组合进行高效地自适应重构调整,提高了云制造服务组合执行的鲁棒性。

关键词: 云制造服务组合, 服务异常, 实际约束, 自适应重构, 哈里斯鹰优化算法

Abstract: The optimization of cloud manufacturing service composition(CMSC) was performed under the conditions considering few exceptions and practical constraints, which made the existing approaches unsuitable for tackling CMSC optimization under various practical constraints, let alone adaptively reconfiguring the original execution path of CMSC when exceptions occur. To fill the gap, considering the non-negligible practical constraints, a service composition adaptive reconfiguration model (CMSCAR) when manufacturing service exceptions occur was presented with the optimization goals of processing quality, cost, and service quality. To address the model, on the basis of detailed analysis of the essential characteristics of the researched problem, via integrating optimization strategies, an HHO-based CMSC dynamic reconfiguration algorithm (SCDRAHHO) was proposed. Practical application cases show that the presented model and algorithm can efficiently and adaptively reconfigure the service composition (compared to GWO and PSO et al.) under practical constraints when manufacturing service exceptions occur, improving the robustness of cloud manufacturing service composition execution.

Key words: cloud manufacturing service composition, service exception, practical constraints, adaptively reconfigure, HHO

中图分类号: