[1] CHEN Zhuyun,LI Weihua. Multisensor feature fusion for fearing fault diagnosis using sparse autoencoder and deep belief network[J]. IEEE Transactions on Instrumentation and Measurement,2017,66(7):1693-1702. [2] CHEN Zhuyun,KONSTANTINOS G,LI Weihua. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine[J]. Mechanical Systems and Signal Processing,2019,133(11):1-21. [3] 杨蕊,李宏坤,王朝阁,等. 利用FCKT以及深度自编码神经网络的滚动轴承故障智能诊断[J]. 机械工程学报,2019,55(7):65-72. YANG Rui,LI Hongkun,WANG Chaoge,et al. Intelligent fault detection for rolling element bearing based on FCKT and deep Auto-coding neural network[J]. Journal of Mechanical Engineering,2019,55(7):65-72. [4] YANG Fangfang,LI Weihua,LI Chuan,et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy,2019,175(5):66-75. [5] SHAO Haidong,JIANG Hongkai,ZHAO Ke,et al. A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings[J]. Mechanical Systems and Signal Processing,2018,110(9):193-209. [6] YANG Liu,CHEN Haixin. Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network[J]. Neural Computing and Applications,2019,31(5):4463-4478. [7] QU Yongzhi,ZHANG Yue,HE Miao,et al. Gear pitting fault diagnosis using disentangled features from unsupervised deep learning[J]. Journal of Risk and Reliability,2019,233(5):719-730. [8] LI Tianfu,ZHAO Zhibin,SUN Chuang,et al. Wavelet kernel net:an interpretable deep neural network for industrial intelligent diagnosis[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2021,51(1):1-11. [9] 王华庆,任帮月,宋浏阳,等. 基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法[J]. 机械工程学报,2019,55(7):35-43. WANG Huaqing,REN Bangyue,SONG Liuyang,et al. Sparse representation method based on termination criteria improved K-SVD dictionary learning for feature enhancement[J]. Journal of Mechanical Engineering,2019,55(7):35-43. [10] 吴淑明,胡海峰,赵志斌,等. 增强稀疏分解及其在叶片振动参数识别中的应用[J]. 机械工程学报,2019,55(19):19-27. WU Shuming,HU Haifeng,ZHAO Zhibin,et al. Enhancing sparse decomposition based blade vibration parameter identification[J]. Journal of Mechanical Engineering,2019,55(19):19-27. [11] YANG Honggang,LIN Huibin,DING Kang. Sliding window denoising K-Singular value decomposition and its application on rolling bearing impact fault diagnosis[J]. Journal of Sound and Vibration,2018,421(5):205-219. [12] KHADERSAB A,SHIVAKUMAR S. Vibration analysis techniques for rotating machinery and its effect on bearing faults[J]. Procedia Manufacturing,2018,20(2):247-252. [13] LIN Huibin,WU Fangtan,HE Guolin. Rolling bearing fault diagnosis using impulse feature enhancement and nonconvex regularization[J]. Mechanical Systems and Signal Processing,2020,142(8):1-17. [14] 曹宏瑞,景新,苏帅鸣,等. 中介轴承故障动力学建模与振动特征分析[J]. 机械工程学报,2020,56(21):89-99. CAO Hongrui,JING Xin,SU Shuaiming,et al. Dynamic modeling and vibration analysis for inter-shaft bearing fault[J]. Journal of Mechanical Engineering,2020,56(21):89-99. [15] ZHANG Shen,WANG Bingnan,KANEMURA M,et al. Model-Based analysis and quantification of bearing faults in induction machines[J]. IEEE Transactions on Industry Applications,2020,56(3):2158-2170. [16] DING Chuancang,ZHAO Ming,LIN Jing. Sparse feature extraction based on periodical convolutional sparse representation for fault detection of rotating machinery[J]. Measurement Science and Technology,2020,32(1):8-15. [17] WANG Huaqing,REN Bangyue,SONG Liuyang,et al. A novel weighted sparse representation classification strategy based on dictionary learning for rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(3):712-720. [18] WANG Cong,GAN Meng,ZHU Changan. Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory[J]. Journal of Intelligent Manufacturing,2018,29(4):937-951. [19] ZHAO Zhibin,WANG Shibin,SUN Chuang,et al. Sparse multiperiod group lasso for bearing multifault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(2):419-431. [20] HE Guolin,DING Kang,LIN Hhuibin. Fault feature extraction of rolling element bearings using sparse representation[J]. Journal of Sound and Vibration,2016,366(3):514-527. |