• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (12): 183-194.doi: 10.3901/JME.2023.12.183

• 特邀专栏:制造大数据分析与决策 • 上一篇    下一篇

扫码分享

图结构联合时序数据驱动的装备剩余使用寿命预测方法

沈天浩1,2, 丁康1, 黎杰3, 黄如意2,4, 李巍华1,2,4   

  1. 1. 华南理工大学机械与汽车工程学院 广州 510641;
    2. 人工智能与数字经济广东省试验室(广州) 广州 510335;
    3. 广州华工机动车检测技术有限公司 广州 510730;
    4. 华南理工大学吴贤铭智能工程学院 广州 511442
  • 收稿日期:2022-09-30 修回日期:2023-01-30 出版日期:2023-06-20 发布日期:2023-08-15
  • 通讯作者: 黎杰(通信作者),男,1964年出生,教授级高级工程师。主要研究方向为汽车检测与控制、故障预测与预测性维护。E-mail:106lj@163.com;李巍华(通信作者),男,1973年出生,博士,教授,博士研究生导师。主要研究方向为工业智能、工业大数据、装备智能运维、汽车智能驾驶。E-mail:whlee@scut.edu.cn
  • 作者简介:沈天浩,男,1998年出生。主要研究方向为故障预测与预测性维护、基于深度学习的设备剩余使用寿命预测。E-mail:202020101019@mail.scut.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB1702400)、国家自然科学基金(52275111,52205100)、广东省基础与应用基础研究基金自然科学基金面上(2023A1515012856)和中国博士后科学基金(2022M711197)资助项目。

Graph Structure and Temporal Data Driven Remaining Useful Life Prediction Method for Machinery

SHEN Tianhao1,2, DING Kang1, LI Jie3, HUANG Ruyi2,4, LI Weihua1,2,4   

  1. 1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641;
    2. Guangdong Artificial Intelligent and Digital Economy Laboratory (Guangzhou), Guangzhou 510335;
    3. Guangzhou Huagong Automobile Inspection Technology Co., LTD., Guangzhou 510730;
    4. Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511442
  • Received:2022-09-30 Revised:2023-01-30 Online:2023-06-20 Published:2023-08-15

摘要: 随着制造业向数字化、智能化方向转型升级,基于数据驱动的装备智能运维成为了学术界和工业界研究的潮流。然而,当前剩余寿命预测方法存在时序信息提取能力弱、难以建立监测数据与装备真实退化趋势的准确映射关系等局限性。为解决上述问题,提出一种图结构联合时序数据驱动的装备剩余使用寿命预测方法。首先,融合图卷积网络的图时序信息表征能力与长短时记忆网络的长时序特征刻画能力,构建包含图卷积、长短时记忆和逻辑回归模块的剩余寿命预测模型;其次,利用特征相关性构造的具有时序特性的图结构数据、利用原始数据构造具有固定时间步长的时序数据,分别作为图卷积模块和长短时记忆模块的输入,以最小化预测损失为目标,训练并优化寿命预测模型;最后,利用轴承全寿命加速退化试验数据,验证所提方法的有效性,所提方法在单工况下RMSE为0.107,综合工况下RMSE为0.099。与领域内先进方法对比的试验结果表明,所提方法取得了最优的预测性能,可为装备的预测与健康管理提供决策依据,具有较强的工程应用价值。

关键词: 剩余寿命预测, 图神经网络, 长短时记忆网络, 滚动轴承, 装备智能运维

Abstract: With the digital and intelligent transformation in manufacturing industry, the data-driven intelligent maintenance for machinery has been attracted more and more attention from both the academic and industrial society in recent years. However, the existing remaining life prediction methods have some limitations, such as the poor performance for extracting useful time sequence information and for establishing accurate mapping between monitoring data and real degradation trend. To solve the above problems, a graph structure and temporal data driven remaining useful life prediction method is proposed for machinery. First, the remaining life prediction model is constructed by combining the graph convolution neural network(GCN) and the long short-term memory (LSTM). Second, the original data are used to construct the fixed time-step temporal data, and are also used to construct the graph structure data by using the feature correlation algorithm. The graph data and temporal data is used as the input of GCN and LSTM module, respectively. Furthermore, the life prediction model can be trained and optimized by minimizing the prediction loss. Finally, the performance of the proposed method is verified based on an accelerated bearing degradation dataset. The RMSE of the proposed method is 0.107 in a single working condition and 0.099 in a comprehensive working condition. The experimental results show that the proposed method achieves a better performance than that of the other state-of-the-art methods and provides a promising solution for prognostic and health management of machinery in practical industrial application.

Key words: remaining useful life prediction, GNN, LSTM, rolling bearing, intelligent operation and maintenance

中图分类号: