[1] 张洁,汪俊亮,吕佑龙,等. 大数据驱动的智能制造[J]. 中国机械工程,2019,30(2):127-133,158. ZHANG Jie,WANG Junliang,LÜ Youlong,et al. Big data driven intelligent manufacturing[J]. China Mechanical Engineering,2019,30(2):127-133,158. [2] LI Jialin,LI Xueyi,DAVID H. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction[J]. IEEE Access,2019,7:75464-75475. [3] WEN Long,LI Xinyu,GAO Liang,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2017,65(7):5990-5998. [4] 庞哲楠,裴洪,李天梅,等. 考虑不完美维修的随机退化设备剩余寿命自适应预测方法[J]. 机械工程学报,2023,59(2):14-29. PANG Zhenan,PEI Hong,LI Tianmei,et al. Remaining useful lifetime prognostic approach for stochastic degradation equipment considering imperfect maintenance activities[J]. Journal of Mechanical Engineering,2023,59(2):14-29. [5] 陈祝云,钟琪,黄如意,等. 基于增强迁移卷积神经网络的机械智能故障诊断[J]. 机械工程学报,2021,57(21):96-105. CHEN Zhuyun,ZHONG Qi,HUANG Ruyi,et al. Intelligent fault diagnosis for machinery based on enhanced transfer convolutional neural network[J]. Journal of Mechanical Engineering,2021,57(21):96-105. [6] LEI Yaguo,LI Naipeng,GUO Liang,et al. Machinery health prognostics:A systematic review from data acquisition to RUL prediction[J]. Mechanical systems and signal processing,2018,104:799-834. [7] International Organization for Standardization. ISO 13381-1. Condition Monitoring and Diagnostics of Machines-Prognostics-Part 1:General Guidelines[S]. Geneva,Switzerland:ISO,2015. [8] LEI Yaguo,LI Naipeng,GONTARZ S,et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Transactions on reliability,2016,65(3):1314-1326. [9] 王久健,杨绍普,刘永强,等. 一种基于空间卷积长短时记忆神经网络的轴承剩余寿命预测方法[J]. 机械工程学报,2021,57(21):88-95. WANG Jiujian,YANG Shaopu,LIU Yongqiang,et al. A method of bearing remaining useful life estimation based on convolutional long short-term memory neural network[J]. Chinese Journal of Mechanical Engineering,2021,57(21):88-95. [10] 李乃鹏,蔡潇,雷亚国,等. 一种融合多传感器数据的数模联动机械剩余寿命预测方法[J]. 机械工程学报,2021,57(20):29-37,46. LI Naipeng,CAI Xiao,LEI Yaguo,et al. A model-data-fusion remaining useful life prediction method with multi-sensor fusion for machinery[J]. Journal of Mechanical Engineering,2021,57(20):29-37,46. [11] AGGAB T,VRIGNAT P,AVILA M,et al. Remaining useful life estimation based on the joint use of an observer and a hidden Markov model[J]. Proceedings of the Institution of Mechanical Engineers,Part O:Journal of Risk and Reliability,2021:236(5):676-695. [12] WANG Biao,LEI Yaguo,LI Naipeng,et al. Deep separable convolutional network for remaining useful life prediction of machinery[J]. Mechanical Systems and Signal Processing,2019,134:106330. [13] 车畅畅,王华伟,倪晓梅,等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报,2021,57(14):304-312. CHE Changchang,WANG Huawei,NI Xiaomei,et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering,2021,57(14):304-312. [14] LIU Junqiang,LEI Fan,PAN Chunlu,et al. Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion[J]. Reliability Engineering & System Safety,2021,214:107807. [15] 舒涛,张一弛,丁日显. 基于灰色模型与LSTM网络的旋转机械轴承寿命预测[J]. 系统工程与电子技术,2021,43(8):2355-2361. SHU Tao,ZHANG Yichi,DING Rixian. Life prediction of bearings in rotating machinery based on grey model and LSTM network[J]. Systems Engineering and Electronics,2021,43(8):2355-2361. [16] MONTI F,BOSCAINI D,MASCI J,et al. Geometric deep learning on graphs and manifolds using mixture model cnns[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York:IEEE,2017:5115-5124. [17] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural computation,1997,9(8):1735-1780. [18] 黄如意,李霁蒲,王震,等. 基于多任务学习的装备智能诊断与寿命预测方法[J]. 中国科学:技术科学,2022,52(1):123-137. HUANG Ruyi,LI Jipu,WANG Zhen,et al. Intelligent diagnostic and prognostic method based on multitask learning for industrial equipment[J]. Sci. Sin. Tech.,2022,52(1):123-137. [19] 雷亚国,韩天宇,王彪,等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报,2019,55(16):1-6. LEI Yaguo,HAN Tianyu,WANG Biao,et al. XJTU-SY rolling element bearing accelerated life test datasets:A tutorial[J]. Journal of Mechanical Engineering,2019,55(16):1-6. [20] GU Yingxin,WYLIE B,BOYTE S,et al. An optimal sample data usage strategy to minimize overfitting and underfitting effects in regression tree models based on remotely-sensed data[J]. Remote Sensing,2016,8(11):943. [21] KINGMA D,Ba J. Adam:A method for stochastic optimization[C]//International Conference on Learning Representations,ICLR 2015,San Diego,California,May 7-9,2015. [22] ZHANG Wei,PENG Gaoliang,LI Chuanhao,et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors,2017,17(2):425. [23] ZHENG Shuai,RISTOVSKI K,FARAHAT A,et al. Long short-term memory network for remaining useful life estimation[C]//2017 IEEE international conference on prognostics and health management (ICPHM). IEEE,2017:88-95. [24] HINCHI A,TKIOUAT M. Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J]. Procedia Computer Science,2018,127:123-132. [25] CHEN Yuxuan,JIN Yi,JIRI G. Predicting tool wear with multi-sensor data using deep belief networks[J]. The International Journal of Advanced Manufacturing Technology,2018,99(5):1917-1926. [26] SHE Daoming,JIA Minping. A BiGRU method for remaining useful life prediction of machinery[J]. Measurement,2021,167:108277. [27] ZHU Xingquan,WU Xindong. Class noise vs. attribute noise:A quantitative study[J]. Artificial Intelligence Review,2004,22(3):177-210. |