机械工程学报 ›› 2023, Vol. 59 ›› Issue (12): 1-16.doi: 10.3901/JME.2023.12.001
汪俊亮1,2, 高鹏捷3, 张洁1,2, 王力翚4
收稿日期:
2022-07-15
修回日期:
2023-05-07
出版日期:
2023-06-20
发布日期:
2023-08-15
通讯作者:
张洁(通信作者),女,1963年出生,博士,教授,博士研究生导师。主要研究方向为智能制造。E-mail:mezhangjie@dhu.edu.cn
作者简介:
汪俊亮,男,1991年出生,博士,副研究员,硕士研究生导师。主要研究方向为智能制造系统和工业大数据。E-mail:junliangwang@dhu.edu.cn;高鹏捷,男,1998年出生,硕士。主要研究方向为工业大数据。E-mail:pengjiegao@mail.dhu.edu.cn;王力翚,男,1959年出生,教授,加拿大工程院院士。主要研究方向为智能制造。E-mail:lihui.wang@iip.kth.se
基金资助:
WANG Junliang1,2, GAO Pengjie3, ZHANG Jie1,2, WANG Lihui4
Received:
2022-07-15
Revised:
2023-05-07
Online:
2023-06-20
Published:
2023-08-15
摘要: 随着5G、物联网(Internet of things, IoT)和云计算等技术的发展,制造系统中数据的体量持续增长,并涌现出了全新的大数据特性与内涵,逐渐成为支撑制造系统运行优化的关键要素。为了进一步释放制造大数据的要素红利,对制造大数据分析方法展开综述,理清制造大数据的内涵,梳理大数据分析方法的发展历程,归纳制造大数据分析的应用,总结挑战与发展趋势。首先,从制造大数据的特点、数据密集型科学的内涵、大数据驱动的智能制造系统新模式三方面论述了制造大数据的新内涵;接着,从支撑技术与方法特点,对制造领域的大数据分析方法的发展历程进行回顾。然后,从产品设计、生产调度、产品装配、质量优化、设备运维和制造服务六个关键应用领域,对大数据分析方法在智能制造中的应用进行综述。最后,讨论制造大数据分析方法面临的挑战,展望未来大数据分析方法的发展方向,以期激发制造大数据分析方法的新思维、新理论,并推进制造大数据技术进一步发展。
中图分类号:
汪俊亮, 高鹏捷, 张洁, 王力翚. 制造大数据分析综述:内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16.
WANG Junliang, GAO Pengjie, ZHANG Jie, WANG Lihui. A Review of Manufacturing Big Data: Connotation, Methodology, Application and Trends[J]. Journal of Mechanical Engineering, 2023, 59(12): 1-16.
[1] GROVER P,KAR A K. Big data analytics:A review on theoretical contributions and tools used in literature[J]. Global Journal of Flexible Systems Management,2017,18(3):203-229. [2] GAO R X,WANG L,HELU M,et al. Big data analytics for smart factories of the future[J]. CIRP Annals,2020,69(2):668-692. [3] LENG J,RUAN G,SONG Y,et al. A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0[J]. Journal of Cleaner Production,2021,280:124405. [4] WANG G,GUNASEKARAN A,NGAI E W T,et al. Big data analytics in logistics and supply chain management:Certain investigations for research and applications[J]. International Journal of Production Economics,2016,176:98-110. [5] ZHANG Z,CHEN P,MCGOUGH M,et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning[J]. Nature Machine Intelligence,2019,1(5):236-245. [6] ZHONG R Y,NEWMAN S T,HUANG G Q,et al. Big data for supply chain management in the service and manufacturing sectors:Challenges,opportunities,and future perspectives[J]. Computers & Industrial Engineering,2016,101:572-591. [7] KUSIAK A. Smart manufacturing must embrace big data[J]. Nature,2017,544(7648):23-25. [8] ZHU K,LI G,ZHANG Y. Big data oriented smart tool condition monitoring system[J]. IEEE Transactions on Industrial Informatics,2020,16(6):4007-4016. [9] TAO F,QI Q,LIU A,et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems,2018,48:157-169. [10] YAGER R R. A framework for multi-source data fusion[J]. Information Sciences,2004,163(1):175-200. [11] ZHANG J. Multi-source remote sensing data fusion:Status and trends[J]. International Journal of Image and Data Fusion,2010,1(1):5-24. [12] WANG J,ZHENG P,ZHANG J. Big data analytics for cycle time related feature selection in the semiconductor wafer fabrication system[J]. Computers & Industrial Engineering,2020,143:106362. [13] LUO Y L,ZHANG L,ZHANG K P,et al. Research on the knowledge-based multi-dimensional information model of manufacturing capability in CMfg[J]. Advanced Materials Research,2012,472-475:2592-2595. [14] ZHANG Y,REN S,LIU Y,et al. A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products[J]. Journal of Cleaner Production,2017,142:626-641. [15] LEI Y,JIA F,LIN J,et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics,2016,63(5):3137-3147. [16] WANG J,YANG J,ZHANG J,et al. Big data driven cycle time parallel prediction for production planning in wafer manufacturing[J]. Enterprise Information Systems,2018,12(6):714-732. [17] O'DONOVAN P,LEAHY K,BRUTON K,et al. Big data in manufacturing:A systematic mapping study[J]. Journal of Big Data,2015,2(1):20. [18] HE H,GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering,2009,21(9):1263-1284. [19] SUN Y,KAMEL M S,WONG A K C,et al. Cost-sensitive boosting for classification of imbalanced data[J]. Pattern Recognition,2007,40(12):3358-3378. [20] KANG Q,SHI L,ZHOU M,et al. A distance-based weighted undersampling scheme for support vector machines and its application to imbalanced classification[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(9):4152-4165. [21] ZHANG Y,LI X,GAO L,et al. Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning[J]. Journal of Manufacturing Systems,2018,48:34-50. [22] NIELSEN M. The fourth paradigm:Data-intensive scientific discovery[J]. Nature,2009,462(7274):722-723. [23] HEY A J,TANSLEY S,TOLLE K M,et al. The fourth paradigm:data-intensive scientific discovery:Vol 1[M]. Redmond,WA:Microsoft Research,2009. [24] TOLLE K M,TANSLEY D S W,HEY A J G. The fourth paradigm:data-intensive scientific discovery[J]. Proceedings of the IEEE,2011,99(8):1334-1337. [25] ZHONG R Y,XU C,CHEN C,et al. Big data analytics for physical internet-based intelligent manufacturing shop floors[J]. International Journal of Production Research,2017,55(9):2610-2621. [26] LIU C,LI Y,SHEN W. Integrated manufacturing process planning and control based on intelligent agents and multi-dimension features[J]. The International Journal of Advanced Manufacturing Technology,2014,75(9):1457-1471. [27] BENOSMAN M. Model-based vs data-driven adaptive control:An overview[J]. International Journal of Adaptive Control and Signal Processing,2018,32(5):753-776. [28] KEITH K A,JENSEN D,O'CONNOR B. Text and causal inference:A review of using text to remove confounding from causal estimates[J]. arXiv:2005.00649[cs],2020:1-13. [29] 张洁,汪俊亮,吕佑龙,等. 大数据驱动的智能制造[J]. 中国机械工程,2019,30(2):127-133,158. ZHANG Jie,WANG Junliang,LÜ Youlong,et al. Big data driven intelligent manufacturing[J]. China Mechanical Engineering,2019,30(2):127-133,158. [30] WANG L. From intelligence science to intelligent manufacturing[J]. Engineering,2019,5(4):615-618. [31] GINSBERG J,MOHEBBI M H,PATEL R S,et al. Detecting influenza epidemics using search engine query data[J]. Nature,2009,457(7232):1012-1014. [32] WANG B,FANG Y,SHENG J,et al. BTP prediction model based on ANN and regression analysis[C]//WKDD:2009 Second International Workshop on Knowledge Discovery and Data Mining,Proceedings. Los Alamitos:IEEE Computer Soc,2009:108-111. [33] NAKHAEI F,MOSAVI M R,SAM A,et al. Recovery and grade accurate prediction of pilot plant flotation column concentrate:Neural network and statistical techniques[J]. International Journal of Mineral Processing,2012,110:140-154. [34] ER M J,LIAO J,LIN J Y. Fuzzy neural networks-based quality prediction system for sintering process[J]. IEEE Transactions on Fuzzy Systems,2000,8(3):314-324. [35] CHEN J. A predictive system for blast furnaces by integrating a neural network with qualitative analysis[J]. Engineering Applications of Artificial Intelligence,2001,14(1):77-85. [36] RATH S,SINGH A P,BHASKAR U,et al. Artificial neural network modeling for prediction of roll force during plate rolling process[J]. Materials and Manufacturing Processes,2010,25(1-3):149-153. [37] JIAN L,GAO C. Binary coding SVMs for the multiclass problem of blast furnace system[J]. IEEE Transactions on Industrial Electronics,2013,60(9):3846-3856. [38] BELOHLAV Z,ZAMOSTNY P,HERINK T,et al. A novel approach for the prediction of hydrocarbon thermal cracking product yields from the substitute feedstock composition[J]. Chemical Engineering & Technology,2005,28(10):1166-1176. [39] BHATTACHARYA T. Prediction of silicon content in blast furnace hot metal using Partial Least Squares (PLS)[J]. ISIJ International,2005,45(12):1943-1945. [40] TANGJITSITCHAROEN S,SENJUNTICHAI A. Intelligent monitoring and prediction of surface roughness in ball-end milling process[C]//Frontiers of Manufacturing and Design Science II,Pts 1-6:Vol 121-126. Durnten-Zurich:Trans Tech Publications Ltd,2012:2059-2063. [41] HU J,LI Y,ZHANG J. Surface roughness prediction of high speed milling based on back propagation artificial neural network[C]//Advanced Manufacturing Systems,Pts 1-3:Vol 201-203. Stafa-Zurich:Trans Tech Publications Ltd,2011:696-699. [42] SILVER D,SCHRITTWIESER J,SIMONYAN K,et al. Mastering the game of Go without human knowledge[J]. Nature,2017,550(7676):354-359. [43] ZHANG B,ZHU J,SU H. Toward the third generation of artificial intelligence[J]. SCIENTIA SINICA Informationis,2020,50(9):1281. [44] 宋乐宝. 机理融合数据的热连轧过程板形预测及模型优化[D]. 太原:太原科技大学,2021. SONG Lebao. Shape prediction and model optimization for hot tandem rolling process based on mechanism fusion data[D]. Taiyuan:Taiyuan University of Science and Technology,2021. [45] 王琳涛,张先连,刘检华,等. 机理与数据融合的螺栓连接松脱预测[J]. 计算机集成制造系统,2021,27(3):692-700. WANG Lintao,ZHANG Xianlian,LIU Jianhua,et al. Prediction of bolt connection loosening based on mechanism and data fusion[J]. Computer Integrated Manufacturing Systems,2021,27(3):692-700. [46] 陈彬,王小东,王戎骁,等. 融合机理与数据的灰箱系统建模方法研究[J]. 系统仿真学报,2019,31(12):2575-2583. CHEN Bin,WANG Xiaodong,WANG Rongxiao,et al. The grey-box based modeling approach research integrating fusion mechanism and data[J]. Journal of System Simulation,2019,31(12):2575-2583. [47] WANG J,ZHANG J,WANG X. Bilateral LSTM:A two-dimensional long short-term memory model with multiply memory units for short-term cycle time forecasting in re-entrant manufacturing systems[J]. IEEE Transactions on Industrial Informatics,2018,14(2):748-758. [48] 李乃鹏,蔡潇,雷亚国,等. 一种融合多传感器数据的数模联动机械剩余寿命预测方法[J]. 机械工程学报,2021,57(20):29-37,46. LI Naipeng,CAI Xiao,LEI Yaguo,et al. A model-data-fusion remaining useful life prediction method with multi-sensor fusion for machinery[J]. Journal of Mechanical Engineering,2021,57(20):29-37,46. [49] 李天梅,司小胜,刘翔,等. 大数据下数模联动的随机退化设备剩余寿命预测技术[J]. 自动化学报,2022,48(9):2119-2141. LI Tianmei, SI Xiaosheng,LIU Xiang,et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica,2022,48(9):2119-2141. [50] 周汉权,张纪波,陈金忠,等. 基于多源异构数据融合分析的长输管道泄漏预测[J]. 化工机械,2022,49(1):9-15. ZHOU Hanquan,ZHANG Jibo,CHEN Jinzhong,et al. Long-distance pipeline leakage prediction based on multi-source heterogeneous data fusion analysis[J]. Chemical Engineering & Machinery,2022,49(1):9-15. [51] 于士玉. 热变形机理与数据驱动融合的电主轴热误差建模方法研究[D]. 武汉:武汉理工大学,2020. YU Shiyu. Research on thermal error modeling of motorized spindle based on thermal deformation mechanism and data driven[D]. Wuhan:Wuhan University of Technology,2020. [52] 王美琪,陈恩利,刘鹏飞,等. 融合机理与数据的篦冷机温度软测量模型[J]. 仪器仪表学报,2018,39(6):182-188. WANG Meiqi,CHEN Enli,LIU Pengfei,et al. Soft-testing model for grate cooler temperature measurement with mechanism and data fusion[J]. Chinese Journal of Scientific Instrument,2018,39(6):182-188. [53] 李维刚,杨威,赵云涛,等. 融合大数据与冶金机理的热轧带钢力学性能预报模型[J]. 钢铁研究学报,2018,30(4):302-308. LI Weigang,YANG Wei,ZHAO Yuntao,et al. Mechanical property prediction model of hot-rolled strip via big data and metallurgical mechanism analysis[J]. Journal of Iron and Steel Research,2018,30(4):302-308. [54] KUSIAK A,SALUSTRI F A. Computational intelligence in product design engineering:Review and trends[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews),2007,37(5):766-778. [55] TAO F,CHENG J,QI Q,et al. Digital twin-driven product design,manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology,2018,94(9):3563-3576. [56] IRELAND R,LIU A. Application of data analytics for product design:sentiment analysis of online product reviews[J]. CIRP Journal of Manufacturing Science and Technology,2018,23:128-144. [57] GEIGER C,SARAKAKIS G. Data driven design for reliability[C]//2016 Annual Reliability and Maintainability Symposium (RAMS). Tucson:IEEE. 2016:1-6. [58] TUCKER C S,KIM H M. Data-driven decision tree classification for product portfolio design optimization[J]. Journal of Computing and Information Science in Engineering,2009,9(4):1-14. [59] LI X,NI Y,MING X G,et al. Module-based similarity measurement for commercial aircraft tooling design[J]. International Journal of Production Research,2015,53(17):5382-5397. [60] JIANG S L,LIU M,LIN J H,et al. A prediction-based online soft scheduling algorithm for the real-world steelmaking-continuous casting production[J]. Knowledge-Based Systems,2016,111:159-172. [61] ZHONG R Y,HUANG G Q,LAN S,et al. A two-level advanced production planning and scheduling model for RFID-enabled ubiquitous manufacturing[J]. Advanced Engineering Informatics,2015,29(4):799-812. [62] GANNOUNI A,SAMSONOV V,BEHERY M,et al. Neural combinatorial optimization for production scheduling with sequence-dependent setup waste[C]//2020 IEEE International Conference on Systems,Man,and Cybernetics (SMC). New York:IEEE,2020:2640-2647. [63] WANG C,JIANG P. Manifold learning based rescheduling decision mechanism for recessive disturbances in RFID-driven job shops[J]. Journal of Intelligent Manufacturing,2018,29(7):1485-1500. [64] SAIDI-MEHRABAD M,DEHNAVI-ARANI S,EVAZABADIAN F,et al. An ant colony algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs[J]. Computers & Industrial Engineering,2015,86:2-13. [65] 于璐. 基于混合遗传算法的柔性制造系统调度研究[D]. 镇江:江苏大学,2016. YU Lu. Research on scheduling for flexible manufacturing system based on hybrid genetic algorithm[D]. Zhenjiang:Jiangsu University,2016. [66] ZHENG P,ZHANG P,WANG J,et al. A data-driven robust optimization method for the assembly job-shop scheduling problem under uncertainty[J]. International Journal of Computer Integrated Manufacturing,2020,33:1043-1058. [67] WANG B,WANG X,XIE H. Bad-scenario-set robust scheduling for a job shop to hedge against processing time uncertainty[J]. International Journal of Production Research,2019,57(10):3168-3185. [68] NGUYEN T T,NGUYEN N D,NAHAVANDI S. Deep reinforcement learning for multiagent systems:a review of challenges,solutions,and applications[J]. IEEE Transactions on Cybernetics,2020,50(9):3826-3839. [69] 刘检华,孙清超,程晖,等. 产品装配技术的研究现状、技术内涵及发展趋势[J]. 机械工程学报,2018,54(11):2-28. LIU Jianhua,SUN Qingchao,CHENG Hui,et al. The state-of-the-art,connotation and developing trends of the products assembly technology[J]. Journal of Mechanical Engineering,2018,54(11):2-28. [70] GUO F,LIU Z,HU W,et al. Gain prediction and compensation for subarray antenna with assembling errors based on improved XGBoost and transfer learning[J]. IET Microwaves Antennas & Propagation,2020,14(6):551-558. [71] FENG Y,WANG T,HU B,et al. An integrated method for high-dimensional imbalanced assembly quality prediction supported by edge computing[J]. IEEE Access,2020,8:71279-71290. [72] GELLERT A,PRECUP S A,PIRVU B C,et al. Prediction-based assembly assistance system[C]//202025th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). 2020,1:1065-1068. [73] WANG D. Robust data-driven modeling approach for real-time final product quality prediction in batch process operation[J]. IEEE Transactions on Industrial Informatics,2011,7(2):371-377. [74] 裘辿,谭建荣,刘振宇. 零件表面混合维建模理论、方法及其在产品装配质量预测中的应用[J]. 机械工程学报,2014,50(7):120-127. QIU Chan,TAN Jianrong,LIU Zhenyu. Theory and method of hybrid dimensional part surface modeling and its application in prediction of product assembly quality[J]. Journal of Mechanical Engineering,2014,50(7):120-127. [75] PENG P,WANG Y,HAO C,et al. Automatic fabric defect detection method using PRAN-Net[J]. Applied Sciences-Basel,2020,10(23):8434. [76] LI F,LI F. Bag of tricks for fabric defect detection based on cascade R-CNN[J]. Textile Research Journal,2021,91(5-6):599-612. [77] LI Y,ZHAO W,PAN J. Deformable patterned fabric defect detection with fisher criterion-based deep learning[J]. IEEE Transactions on Automation Science and Engineering,2017,14(2):1256-1264. [78] GAO Y,GAO L,LI X,et al. A multilevel information fusion-based deep learning method for vision-based defect recognition[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(7):3980-3991. [79] MUÑOZ-ESCALONA P,SHOKRANI A,NEWMAN S T. Influence of cutting environments on surface integrity and power consumption of austenitic stainless steel[J]. Robotics and Computer-Integrated Manufacturing,2015,36:60-69. [80] GHORAI S,MUKHERJEE A,GANGADARAN M,et al. Automatic defect detection on hot-rolled flat steel products[J]. IEEE Transactions on Instrumentation and Measurement,2013,62(3):612-621. [81] NAKAZAWA T,KULKARNI D V. Wafer map defect pattern classification and image retrieval using convolutional neural network[J]. IEEE Transactions on Semiconductor Manufacturing,2018,31(2):309-314. [82] KYEONG K,KIM H. Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks[J]. IEEE Transactions on Semiconductor Manufacturing,2018,31(3):395-402. [83] YU J,LIU J. Multiple Granularities Generative Adversarial network for recognition of wafer map defects[J]. IEEE Transactions on Industrial Informatics,2022,18(3):1674-1683. [84] JING J,ZHUO D,ZHANG H,et al. Fabric defect detection using the improved YOLOv3 model[J]. Journal of Engineered Fibers and Fabrics,2020,15:1-8. [85] UZEN H,TURKOGLU M,HANBAY D. Texture defect classification with multiple pooling and filter ensemble based on deep neural network[J]. Expert Systems with Applications,2021,175:114838. [86] GAO Y,GAO L,LI X,et al. A semi-supervised convolutional neural network-based method for steel surface defect recognition[J]. Robotics and Computer-Integrated Manufacturing,2020,61:101825. [87] WANG J,YANG Z,ZHANG J,et al. AdaBalGAN:An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition[J]. IEEE Transactions on Semiconductor Manufacturing,2019,32(3):310-319. [88] WANG J,XU C,DAI L,et al. An unequal learning approach for 3D point cloud segmentation[J]. IEEE Transactions on Industrial Informatics,2021,17(12):7913-7922. [89] XU C,WANG J,TAO J,et al. A knowledge augmented image deblurring method with deep learning for in-situ quality detection of yarn production[J]. International Journal of Production Research,2022,60:1-17. [90] WANG J,XU C,YANG Z,et al. Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition[J]. IEEE Transactions on Semiconductor Manufacturing,2020,33(4):587-596. [91] 江平宇,王岩,王焕发,等. 基于赋值型误差传递网络的多工序加工质量预测[J]. 机械工程学报,2013,49(6):160-170. JIANG Pingyu,WANG Yan,WANG Huanfa,et al. Quality prediction of multistage machining processes based on assigned error propagation network[J]. Journal of Mechanical Engineering,2013,49(6):160-170. [92] 林忠钦,来新民,金隼,等. 复杂产品制造精度控制的数字化方法及其发展趋势[J]. 机械工程学报,2013,49(6):103-113. LIN Zhongqin,LAI Xinmin,JIN Sun,et al. Digital methods of complex product manufacturing precision control and its development trend[J]. Journal of Mechanical Engineering,2013,49(6):103-113. [93] RANDALL R B,ANTONI J. Rolling element bearing diagnostics-a tutorial[J]. Mechanical Systems and Signal Processing,2011,25(2):485-520. [94] HUANG S,GUO Y,LIU D,et al. A two-stage transfer learning-based deep learning approach for production progress prediction in IoT-enabled manufacturing[J]. IEEE Internet of Things Journal,2019,6(6):10627-10638. [95] YANG B,LEI Y,JIA F,et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing,2019,122:692-706. [96] LI W,CHEN Z,HE G. A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery[J]. IEEE Transactions on Industrial Informatics,2021,17(3):1753-1762. [97] CAO J,JIANG Z,WANG K. Customer demand prediction of service-oriented manufacturing incorporating customer satisfaction[J]. International Journal of Production Research,2016,54(5):1303-1321. [98] 陈晟恺,方水良,唐任仲. 基于需求预测的云制造服务租赁配置优化[J]. 计算机集成制造系统,2020,26(11):2944-2954. CHEN Shengkai,FANG Shuiliang,TANG Renzhong. Demand forecasting based optimization of service renting configuration for cloud manufacturing[J]. Computer Integrated Manufacturing Systems,2020,26(11):2944-2954. [99] 张卫,丁金福,纪杨建,等. 工业大数据环境下的智能服务模块化设计[J]. 中国机械工程,2019,30(2):167-173,182. ZHANG Wei,DING Jinfu,JI Yangjian,et al. Modular design of intelligent service based on industrial big data[J]. China Mechanical Engineering,2019,30(2):167-173,182. [100] 张卫,朱信忠,顾新建,等. 工业互联网环境下的智能制造服务流程纵向集成[J]. 系统工程理论与实践,2021,41(7):1761-1770. ZHANG Wei,ZHU Xinzhong,GU Xinjian,et al. Intelligent manufacturing service flow vertical integration in industrial internet environment[J]. Systems Engineering-Theory & Practice,2021,41(7):1761-1770. [101] LENG J,CHEN Q,MAO N,et al. Combining granular computing technique with deep learning for service planning under social manufacturing contexts[J]. Knowledge-Based Systems,2018,143:295-306. [102] 江平宇,朱琦琦,张定红. 工业产品服务系统及其研究现状[J]. 计算机集成制造系统,2011,17(9):2071-2078. JIANG Pingyu,ZHU Qiqi,ZHANG Dinghong. Industrial product service system and its current research[J]. Computer Integrated Manufacturing Systems,2011,17(9):2071-2078. [103] ULLMAN S. Using neuroscience to develop artificial intelligence[J]. Science,2019,363(6428):692-693. [104] COWAN J. McCulloch-Pitts and related neural nets from 1943 to 1989-discussion[J]. Bulletin of Mathematical Biology,1990,52(1-2):73-97. [105] SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[C]//31st Conference on Neural Information Processing Systems (NIPS 2017):Vol 30. La Jolla:Neural Information Processing Systems (NIPS),2017:3859-3869. [106] 郭爱克. 智能时代脑科学的核心是探索智力的本质及其实现[J]. 中国科学:生命科学,2016,46(2):203-205. GUO Aike. The core of brain science in the age of intelligence is to explore the nature of intelligence and its realization[J]. Scientia Sinica(Vitae),2016,46(2):203-205. |
[1] | 张党, 赵永宣, 王振军, 张映锋. 数据-知识混合驱动的离散制造系统智能控制体系构架研究[J]. 机械工程学报, 2024, 60(6): 1-10,20. |
[2] | 狄子钧, 袁东风, 李东阳, 梁道君, 周晓天, 信苗苗, 曹凤, 雷腾飞. 基于多尺度-高效通道注意力网络的刀具故障诊断方法[J]. 机械工程学报, 2024, 60(6): 82-90. |
[3] | 王跃飞, 王超, 许于涛, 孙睿, 肖锴, 王凯林. 边-云协同下智能制造单元作业的数字孪生任务调度方法[J]. 机械工程学报, 2024, 60(6): 137-152. |
[4] | 严如强, 许文纲, 王志颖, 朱启翔, 周峥, 赵志斌, 孙闯, 王诗彬, 陈雪峰, 张军辉, 徐兵. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
[5] | 戴国洪, 张道涵, 彭思敏, 苗一凡, 卓悦, 杨瑞鑫, 于全庆. 人工智能在动力电池健康状态预估中的研究综述[J]. 机械工程学报, 2024, 60(4): 391-408. |
[6] | 苏建涛, 董绍华, 朱诗敏. 多目标混合流水车间机器故障重调度问题研究[J]. 机械工程学报, 2024, 60(4): 438-448. |
[7] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[8] | 王耀南, 谢核, 邓晶丹, 毛建旭, 李文龙, 张辉. 智能制造测量机器人关键技术研究综述[J]. 机械工程学报, 2024, 60(16): 1-18. |
[9] | 王文波, 张映锋, 顾寄南, 张耿, 完严. 数据驱动的离散制造系统性能退化机理建模与预测控制方法研究[J]. 机械工程学报, 2024, 60(16): 400-411. |
[10] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[11] | 温楷儒, 陈祝云, 黄如意, 李东鹏, 李巍华. 基于可解释时空图卷积网络的多传感数据融合诊断方法[J]. 机械工程学报, 2024, 60(12): 158-167. |
[12] | 郑湃, 李成熙, 殷悦, 张荣, 鲍劲松, 王柏村, 谢海波, 王力翚. 增强现实辅助的互认知人机安全交互系统[J]. 机械工程学报, 2023, 59(6): 173-184. |
[13] | 丁明娜, 刘献礼, 岳彩旭, 范梦超, 顾浩. 面向智能制造过程的刀具设计、制备与管控技术[J]. 机械工程学报, 2023, 59(19): 429-459. |
[14] | 陶飞, 张辰源, 刘蔚然, 张贺, 马昕, 高鹏飞, 张建康. 数字工程及十个领域应用展望[J]. 机械工程学报, 2023, 59(13): 193-215. |
[15] | 罗仕鉴, 龚何波, 林伟. 智能产品交互设计研究现状与进展[J]. 机械工程学报, 2023, 59(11): 1-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||