[1] 陈学东, 范志超, 崔军, 等. 我国压力容器高性能制造技术进展[J]. 压力容器, 2021, 38(10):1-15. CHEN Xuedong, FAN Zhichao, CUI Jun, et al. Progress in high-performance manufacturing technology of pressure vessels in my country[J]. Pressure Vessel Technology, 2021, 38(10):1-15. [2] 闫泰起, 唐鹏钧, 陈冰清, 等. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报, 2020, 56(8):37-45. YAN Taiqi, TANG Pengjun, CHEN Bingqing, et al. Effect of annealing temperature on microstructure and tensile properties of laser-selected melting AlSi10Mg alloy[J]. Journal of Mechanical Engineering, 2020, 56(8):37-45. [3] 李怀学, 巩水利, 孙帆, 等. 金属零件激光增材制造技术的发展及应用[J]. 航空制造技术, 2012, 416(20):26-31. LI Huaixue, GONG Shuili, SUN Fan, et al. The development and application of laser additive manufacturing technology for metal parts[J]. Aeronautical Manufacturing Technology, 2012, 416(20):26-31. [4] WU J, WANG X, WANG W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Materialia, 2016, 117:311-320. [5] 雷正龙, 郭亨通, 张登明, 等. 5A06铝合金超声辅助激光填丝焊接熔池流动与结晶行为研究[J]. 机械工程学报, 2021, 57(6):78-86. LEI Zhenglong, GUO Hengtong, ZHANG Dengming, et al. Study on the flow and crystallization behavior of the molten pool in 5A06 aluminum alloy ultrasonic-assisted laser wire-filled welding[J]. Journal of Mechanical Engineering, 2021, 57(6):78-86. [6] 李俐群, 王宪, 曲劲宇, 等. 激光熔化沉积AlSi10Mg及气孔对力学性能的影响[J]. 中国表面工程, 2020, 32(3):109-114. LI Liqun, WANG Xian, QU Jinyu, et al. The effect of laser melting deposition of AlSi10Mg and pores on mechanical properties[J]. China Surface Engineering, 2020, 32(3):109-114. [7] XI X, CHEN B, TAN C, et al. Microstructure and mechanical properties of SiC reinforced AlSi10Mg composites fabricated by laser metal deposition[J]. Journal of Manufacturing Processes, 2020, 58:763-774. [8] WAN L, SHI S, XIA Z, et al. Directed energy deposition of CNTs/AlSi10Mg nanocomposites:Powder preparation, temperature field, forming, and properties[J]. Optics & Laser Technology, 2021, 139:106984. [9] 饶项炜, 顾冬冬, 席丽霞. 选区激光熔化成形碳纳米管增强铝基复合材料成形机制及力学性能研究[J]. 机械工程学报, 2019, 55(15):1-9. RAO Xiangwei, GU Dongdong, XI Lixia. Forming mechanism and mechanical properties of carbon nanotube reinforced aluminum matrix composites by selective laser melting[J]. Journal of Mechanical Engineering, 2019, 55(15):1-9. [10] YANG W, ZHAO Q, XIN L, et al. Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method[J]. Journal of Alloys and Compounds, 2018, 732:748-758. [11] ZHOU W, DONG M, ZHOU Z, et al. In situ formation of uniformly dispersed Al4C3 nanorods during additive manufacturing of graphene oxide/Al mixed powders[J]. Carbon, 2019, 141:67-75. [12] WANG S, WEI X, XU J, et al. Strengthening and toughening mechanisms in refilled friction stir spot welding of AA2014 aluminum alloy reinforced by graphene nanosheets[J]. Materials & Design, 2020, 186:108212. [13] LI Z, GUO Q, LI Z, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Letters, 2015, 15(12):8077-8083. [14] 陆龙生, 王文涛, 谢颖熙, 等. 激光直写制造石墨烯基柔性电子器件的研究进展[J]. 机械工程学报, 2021, 57(21):234-247. LU Longsheng, WANG Wentao, XIE Yingxi, et al. Research progress in the manufacture of graphene-based flexible electronic devices by laser direct writing[J]. Journal of Mechanical Engineering, 2021, 57(21):234-247. [15] COTE L J, KIM F, HUANG J. Langmuir-Blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society, 2009, 131(3):1043-1049. [16] 黄国家, 陈志刚, 李茂东, 等. 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016, 74(10):789-799. HUANG Guojia, CHEN Zhigang, LI Maodong, et al. Surface functional modification of graphene and graphene oxide[J]. Acta Chimica Sinica, 2016, 74(10):789-799. [17] GUO Z, CHEN X, LIU H, et al. Theoretical and experimental investigation on angle of repose of biomass-coal blends[J]. Fuel, 2014, 116:131-139. [18] 杨孝梅, 蹇海根, 张唯, 等. 选区激光熔化AlSi10Mg粉末性能研究[J]. 新技术新工艺, 2021, 7(7):57-63. YANG Xiaomei, JIAN Haigen, ZHANG Wei, et al. Research on the performance of selective laser melting of AlSi10Mg powder[J]. New Technology and New Process, 2021, 7(7):57-63. [19] SENATORE A, D'AGOSTINO V, PETRONE V, et al. Graphene oxide nanosheets as effective friction modifier for oil lubricant:materials, methods, and tribological results[J]. International Scholarly Research Notices, 2013, 2013(1):1-9. [20] 吴利芸. 选区激光熔化成形GNPs/AlSi10Mg复合材料组织性能研究[D]. 太原:中北大学, 2021. WU Liyun. Research on microstructure and properties of GNPs/AlSi10Mg composites formed by laser melting in selected area[D]. Taiyuan:North University of China, 2021. [21] LI Z, FU X, GUO Q, et al. Graphene quality dominated interface deformation behavior of graphene-metal composite:The defective is better[J]. International Journal of Plasticity, 2018, 111:253-265. [22] MOON I K, LEE J, RUOFF R S, et al. Reduced graphene oxide by chemical graphitization[J]. Nature Communications, 2010, 1(1):1-6. [23] ZHOU Y, BAO Q, TANG L, et al. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chemistry of Materials, 2009, 21(13):2950-2956. [24] CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010, 48(4):1146-1152. [25] CHEN D, LI L, GUO L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid[J]. Nanotechnology, 2011, 22(32):325601. [26] BOURELL D, KRUTH J P, LEU M, et al. Materials for additive manufacturing[J]. CIRP Annals, 2017, 66(2):659-681. [27] CALCAGNOTTO M, PONGE D, RAABE D. Effect of grain refinement to 1μm on strength and toughness of dual-phase steels[J]. Materials Science and Engineering:A, 2010, 527(29-30):7832-7840. [28] CHU K, WANG F, WANG X, et al. Interface design of graphene/copper composites by matrix alloying with titanium[J]. Materials & Design, 2018, 144:290-303. [29] WU L, ZHAO Z, BAI P, et al. Wear resistance of graphene nano-platelets (GNPs) reinforced AlSi10Mg matrix composite prepared by SLM[J]. Applied Surface Science, 2020, 503:144156. [30] KIM W, LEE T, HAN S. Multi-layer graphene/copper composites:Preparation using high-ratio differential speed rolling, microstructure and mechanical properties[J]. Carbon, 2014, 69:55-65. |