[1] Executive Summary Services Robots 2020[OL].[2020-10-08].https://ifr.org/free-downloads/. [2] EA AFFUM,AGYEMAN-PREMPEH K,ADUMATTAC,et al.Smart home energy management system based on the Internet of things (Io T)[J].International Journal of Advanced Computer Science and Applications (IJACSA),2021,12(2):1. [3] CHOI W,KIM J,LEE S,et al.Smart home and internet of things:A bibliometic study[J].Journal of Cleaner Production,2021(1):301. [4] LI X,ZHONG J,KAMRUZZAMAN M M.Complicated robot activity recognition by quality-aware deep reinforcement learning[J].Future Generation Computer Systems,2021,117:1. [5] KIM U,KIM J.A stabilized feedback episodic memory (SF-EM) and home service provision framework for robot and Io T collaboration[J].IEEE Transactions on Cybernetics,2020,50(5):1. [6] 赵雅婷,赵韩,梁昌勇,等.养老服务机器人现状及其发展建议[J].机械工程学报,2019,55(23):13-24.ZHAO Yating,ZHAO Han,LIANG Changyong,et al.Current situation and development suggestions of old-age service robot[J].Journal of Mechanical Engineering,2019,55(23):13-24. [7] 祁若龙,张珂,周维佳,等.机械臂高斯运动轨迹规划操作成功概率预估计方法[J].机械工程学报,2019,55(1):54-63.QI Ruolong,ZHANG Ke,ZHOU Weijia,et al.Trajectory planning and success probability estimation of operation for Gaussian motion manipulators[J].Journal of Mechanical Engineering,2019,55(1):54-63. [8] CAO Z,YIN L,FU Y.Vision-based stabilization of nonholonomic mobile robots by integrating sliding-mode control and adaptive approach[J].Chinese Journal of Mechanical Engineering,2013,26(1):21-28. [9] 杨扬.基于机器视觉的服务机器人智能抓取研究[D].上海:上海交通大学,2014.YANG Yang.Study on the machine vision based intelligent grasping for service robot[D].Shanghai:Shanghai Jiao Tong University,2014. [10] BESL P,MCKAY N.Method for registration of 3-Dshapes[C]//Robotics-DL tentative.International Society for Optics and Photonics,1992:586-606. [11] HINTERSTOISSER S,HOLZER S,CAGNIART C,et al.Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[C]//IEEEInternational Conference on Computer Vision.IEEE,2012:858-865. [12] SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3D shape recognition[J].ICCV,2015(1):945-953. [13] QI C,SU H,MO K,et al.Point Net:Deep learning on point sets for 3D classification and segmentation[J].2017,16:1. [14] QI C,YI L,SU H,et al.Point Net++:Deep hierarchical feature learning on point sets in a metric space[J].2017,6:1. [15] LIU Y,FAN B,MENG G.,et al.Dense Point:Learning densely contextual representation for efficient point cloud processing[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).IEEE,2020. [16] WU W,QI Z,FUXIN L.Point Conv:Deep convolutional networks on 3D point clouds[C]//2019 IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020. [17] 卢冠男.基于机器视觉的工业机器人抓取系统的研究[D].合肥:合肥工业大学,2017.LU Guannan.Research on industrial robot crawling system based on machine vision[D].Hefei:Hefei University of Technology,2017. [18] ZHANG H,WANG F,WANG J,et al.Robot grasping method optimization using improved deep deterministic policy gradient algorithm of deep reinforcement learning[J].The Review of Scientific Instruments,2021,92(2):1. [19] XU L,ZHOU Z,WANG C.An robot vision grasping network based on inception-lite[J].Journal of Physics:Conference Series,2021,1748(2):1. [20] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shot Multi Box detector[C]//European Conference on Computer Vision.Springer,Cham,2016:21-37. [21] HINTERSTOISSER S,LEPETIT V,ILIC S,et al.Model based training,detection and pose estimation of texture-less 3D objects in heavily cluttered scenes[C]//Asian Conference on Computer Vision.Springer,Berlin,Heidelberg,2012:548-562. [22] HINTERSTOISSER S,CAGNIART C,ILIC S,et al.Gradient response maps for real-time detection of textureless objects[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2012,34(5):876-888. |