• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (5): 69-77.doi: 10.3901/JME.2022.05.69

• 机器人及机构学 • 上一篇    下一篇

扫码分享

家庭服务机器人手眼协调系统设计

田蔚瀚1, 罗亚哲1, 李逸飞1, 陈殿生1,2   

  1. 1. 北京航空航天大学机械工程及自动化学院 北京 100191;
    2. 北京航空航天大学北京生物医学工程高精尖中心 北京 100191
  • 收稿日期:2021-03-05 修回日期:2021-07-27 出版日期:2022-03-05 发布日期:2022-04-28
  • 通讯作者: 陈殿生(通信作者),男,1969年出生,博士,教授,博士研究生导师。主要研究方向为服务机器人、软体机器人。E-mail:chends@163.com E-mail:chends@163.com
  • 作者简介:田蔚瀚,男,1994年出生。主要研究方向为服务机器人。E-mail:tianweihan@buaa.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2018YFB1307103)。

Design of Hand-eye Coordination System for Home Service Robot

TIAN Yu-han1, LUO Ya-zhe1, LI Yi-fei1, CHEN Dian-sheng1,2   

  1. 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191;
    2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191
  • Received:2021-03-05 Revised:2021-07-27 Online:2022-03-05 Published:2022-04-28

摘要: 针对目前智能家庭场景下,家居服务机器人对不同物品位姿的识别准确度与操作性差等问题,进行机器人手眼协调识别技术与物品灵巧操作规划方法的研究,提出了视觉前馈目标定位与视觉反馈位姿匹配相结合的识别与多位姿抓取方法。首先,基于SSD深度神经网络模型识别待抓取物品,并进行三维测定,以得到物品粗略坐标位置;其次,根据所得三维坐标预设深度相机与物品的相对位姿,采集物品与障碍物的深度信息,并基于Linemod算法与内置三维模型进行位姿匹配,完成对物品精确位姿的测定;最后,依据所得物品与障碍物的位置与姿态,规范臂手系统的抓取位姿,实现灵巧抓取物品。由以上原理,设计手眼协调测试实验进行不同桌面高度的物品抓取成功率与抓取误差测试,实验抓取总成功率高,且误差满足实际精度要求;该研究有利于提高家居服务机器人物品操作的灵巧性与适应性,对于家居服务机器人产业的发展具有重要意义。

关键词: 服务机器人, 手眼协调, 物品抓取, 位姿识别

Abstract: Based on the needs of item identification and operation in current smart home, and in view of the poor dexterity and accuracy of different poses of objects in existing household service robot, the research on robot hand-eye coordination recognition technology and item dexterous operation planning method are studied. In this paper, a recognition and multi-pose grasping method based on visual feedforward to locate three-dimensional position of target and visual feedback to match target pose is proposed.Firstly, SSD depth neural network model is used to identified items, and the three-dimensional position is carried out as the rough coordinate of the target. Then, the relative coordinate of the depth camera and the object is preset according to the obtained three-dimensional coordinates, and the depth information of the object and the obstacle is collected. At the same time, the pose matching is executed by comparing the built-in three-dimensional model with the accurate object by means of Linemod algorithm.Finally, according to the position and posture of the obtained objects and obstacles, the grasping posture of the arm control system is standardized to achieve the dexterous grasping of objects. From the above principles, Design hand-eye control experiments of tables at different heights to test success rate and grasping error by standardizing the position and process of item grabbing. As a result, there is a high successful rate, and the root mean square errors of grasping in three orientations are less than 0.006m. Therefore, it is applicable to the grasping and other operations of cube, column, sphere and other items; It is of great significance to the development of home service robot industry.

Key words: home service robot, hand-eye coordination, pose recognition, object grasping

中图分类号: