[1] 周海超, 梁晨, 杨建, 等.提升轮胎抗滑水性能的仿生方法[J].机械工程学报, 2015, 51(8):125-130.ZHOU Haichao, LIANG Chen, YANG Jian, et al.Bionic method for improving tire anti-hydroplaning performance[J].Journal of Mechanical Engineering, 2015, 51(8):125-130. [2] 周海超, 王国林, 姜震, 等.湿滑状态下轮胎路面摩擦特性的数值分析方法[J].机械工程学报, 2020, 56(21):190-198.ZHOU Haichao, WANG Guolin, JIANG Zhen, et al.Numerical analysis method for friction characteristics of tire-pavement[J].Journal of Mechanical Engineering, 2020, 56(21):190-198. [3] MORSY S, SHAKER A, EL-RABBANY A.Multispectral LiDAR data for land cover classification of urban areas[J].Sensors, 2017, 17(5):958. [4] AKI M, ROJANAARPA T, NAKANO K, et al.Road surface recognition using laser radar for automatic platooning[J].IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10):2800-2810. [5] SHIN J, PARK H, KIM T.Characteristics of laser backscattering intensity to detect frozen and wet surfaces on roads[J].Journal of Sensors, 2019, 2019(1):1-9. [6] Bystrov A, Hoare E, Tran T, et al.Sensors for automotive remote road surface classification[C]//2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Sep.12-14, 2018, Madrid, Spain.IEEE, 2018. [7] NAKASHIMA S, ARAMAKI S, KITAZONO Y, et al.Application of ultrasonic sensors in road surface condition distinction methods[J].Sensors, 2016, 16(10):1678. [8] KALLIRIS M, KANARACHOS S, KOTSAKIS R, et al.Machine learning algorithms for wet road surface detection using acoustic measurements[C]//Proceedings of the 2019 IEEE International Conference on Mechatronics (ICM), Mar.18-20, 2019, Ilmenau University of Technology, Ilmenau, Germany.IEEE, 2019:265-270. [9] 卢俊辉, 王建强, 李克强, 等.基于路面温度和太阳辐射强度的路面状态识别方法[J].农业机械学报, 2010, 41(5):21-23.LU Junhui, WANG Jianqiang, LI Keqiang, et al.Road condition detection based on road temperature and solar radiation[J].Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(5):21-23. [10] Shinmoto Y, Takagi J, Egawa K, et al.Road surface recognition sensor using an optical spatial filter[C]//Proceedings of the 1997 IEEE Conference on Intelligent Transportation Systems(ITSC 997), Nov.09-12, 1997, Boston, Massachusetts, USA.1997:1000-1004. [11] Yamada M, Ueda K, Horiba I, et al.A study of the road surface condition detection technique for deployment on a vehicle[J].Transactions of the Institute of Electrical Engineers of Japan, 2004, 124(3):753-760. [12] Jokela M, Kutila M, Le L.Road condition monitoring system based on a stereo camera[C]//Proceedings of the IEEE 5th International Conference on Intelligent Computer Communication and Processing, Aug.27-29, 2009, Cluj Napoca, Romania.2009:423-428. [13] 顾昊, 李勃, 张潇, 等.基于偏振测量的路面积水积冰检测方法[J].电子测量技术, 2011, 34(7):99-102.GU Hao, LI Bo, ZHANG Xiao, et al.Detection of road surface water and ice based on polarization measurement[J].Electronic Measurement Technology, 2011, 34(7):99-102. [14] COLACE L, SANTONI F, ASSANTO G.A near-infrared optoelectronic approach to detection of road conditions[J].Optics and Lasers in Engineering, 2013, 51(5):633-636. [15] COLACE L, SANTONI F, ASSANTO G.Optical road-ice detector operating in the near infrared[J].Electronics Letters, 2013, 49(5):338-339. [16] JONSSON P, CASSELGREN J, THORNBERG B.Road surface status classification using spectral analysis of NIR camera images[J].IEEE Sensors Journal, 2015, 15(3):1641-1656. [17] Amthor M, Hartmann B, Denzler J.Road condition estimation based on spatio-temporal reflection models[C]//Proceedings of the 37th German Conference on Pattern Recognition (GCPR), Oct.07-10, 2015, Aachen, Germany.2015:3-15. [18] 苑会珍, 葛俊锋, 叶林, 等.基于线偏振度的非接触式路面状态探测方法[J].仪表技术与传感器, 2017(8):89-91.YUAN Huizhen, GE Junfeng, YE Lin, et al.Noncontact road condition detection method based on degree of linear polarization[J].Instrument Technique and Sensor, 2017(8):89-91. [19] LECUN Y, BENGIO Y, HINTON G.Deep learning[J].Nature, 2015, 521(7553):436-444. [20] LIU Weibo, WANG Zidong, LIU Xiaohui, et al.A survey of deep neural network architectures and their applications[J].Neurocomputing, 2017, 234:11-26. [21] Yang H, Jang H, Jeong D.Detection algorithm for road surface condition using wavelet packet transform and SVM[C]//Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV 2013), Jan.30-Feb.01, 2013, Inha Univ, Incheon, South Korea.2013:323-326. [22] 万剑, 赵恺, 王维锋.基于高维特征和RBP神经网络的湿滑道路图像判别方法[J].交通信息与安全, 2013, 31(2):32-35.WAN Jian, ZHAO Kai, WANG Weifeng.Classification of slippery road images based on high-dimensional features and RBP neural network[J].Journal of Transport Information and Safety, 2013, 31(2):32-35. [23] Zhao J, WU H, Chen L.Road surface state recognition based on SVM optimization and image segmentation processing[J].Journal of Advanced Transportation, 2017, 2017:1-21. [24] HAN X, NGUYEN C, YOU S, et al.Single image water hazard detection using FCN with reflection attention units[C]//15th European Conference on Computer Vision (ECCV).Lecture Notes in Computer Science (LNCS), Sept.08-14, 2018, Munich, Germany.ECCV, 2018:105-21. [25] Nolte M, Kister N, Maurer M.Assessment of deep convolutional neural networks for road surface classification[C]//21st IEEE International Conference on Intelligent Transportation Systems (ITSC), Nov.04-07, 2018, Maui, Hawaii, USA.IEEE, 2018:381-386. [26] Pan G, Fu L, Yu R, et al.Winter road surface condition recognition using a pretrained deep convolutional network[C]//Transporation Research Board 97th Annual Metting, Jan.07-11, 2018, Washington DC, USA.2018:18-00838. [27] PAN G, MURESAN M, YU R, et al.Real-time winter road surface condition monitoring using an improved residual CNN[J].Canadian Journal of Civil Engineering, 2020. [28] DEWANGAN D K, SAHU S.RCNet:Road classification convolutional neural networks for intelligent vehicle system[J].Intelligent Service Robotics, 2021, 2021:1-16. [29] WOO S, PARK J, LEE J, et al.CBAM:convolutional block attention module[C]//15th European Conference on Computer Vision (ECCV).Lecture Notes in Computer Science (LNCS), Sept.08-14, 2018, Munich, Germany.ECCV, 2018:3-19. [30] TAN M, LE Q.EfficientNet:rethinking model scaling for convolutional neural networks[J].2019, arXiv:1905.11946. [31] FU J, LIU J, TIAN H, et al.Dual attention network for scene segmentation[C]//32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun.16-20, 2019, long Beach, California, USA.2019:3141-3149. [32] RAMACHANDRAN P, ZOPH B, LE Q.Searching for activation functions[J].2017, arXiv:1710.05941. [33] ELFWING S, UCHIBE E, DOYA K.Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J].Neural Networks, 2018, 107(SI):3-11. [34] HE T, ZHANG Z, ZHANG H, et al.Bag of tricks for image classification with convolutional neural networks[C]//32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun.16-20, 2019, Long Beach, California, USA.2019:558-567. [35] LOSHCHILOV I, HUTTER F.SGDR:Stochastic gradient descent with warm restarts[C/CD]//5th International Conference on Learning Representations (ICLR 2017), Apr.24-26, 2017, Toulon, France.2017. [36] PITROPOV M, GARCIA D, REBELLO J, et al.Canadian adverse driving conditions dataset[J].2020, arXiv:2001.10117. [37] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].2014, arXiv:1409.1556. [38] SZEGEDY C, LIU W, JIA Y, et al.Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun.07-12, 2015, Boston, Massachusetts, USA.2015:1-9. [39] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 27-30, 2016, Seattle, Washington, USA.2015:770-778. [40] SANDLER M, HOWARD A, ZHU M, et al.MobileNetV2:Inverted residuals and linear bottlenecks[C]//31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun.18-23, 2018, Salt Lake City, Utah, USA.2018:4510-4520. [41] MA N, ZHANG X, ZHENG H, et al.ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]//15th European Conference on Computer Vision (ECCV).Lecture Notes in Computer Science (LNCS), Sept.08-14, 2018, Munich, Germany.ECCV, 2018:122-138. |