| [1] LI B, HANEKLAUS N.The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China[J].Energy Reports, 2022, 8(4):1090-1098. [2] WANG X, WEI X, ZHU J, et al.A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J].eTransportation, 2021, 7:100093.
 [3] WANG Y, WANG L, LI M, et al.A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems[J].eTransportation, 2020, 4:100064.
 [4] HALES A, PROSSER R, BRAVO DIAZ L, et al.The cell cooling coefficient as a design tool to optimise thermal management of lithium-ion cells in battery packs[J].eTransportation, 2020, 6:100089.
 [5] ZHOU Z, CUI Y, KONG X, et al.A fast capacity estimation method based on open circuit voltage estimation for LiNixCoyMn1-x-y battery assessing in electric vehicles[J].Journal of Energy Storage, 2020, 32:101830.
 [6] LIU J, WANG Z, HOU Y, et al.Data-driven energy management and velocity prediction for four-wheel-independent-driving electric vehicles[J].eTransportation, 2021, 9:100119.
 [7] SONG Z, YANG X G, YANG N, et al.A study of cell-to-cell variation of capacity in parallel-connected lithium-ion battery cells[J].eTransportation, 2021, 7:100091.
 [8] WANG X, FANG Q, DAI H, et al.Investigation on cell performance and inconsistency evolution of series and parallel lithium-ion battery modules[J].Energy Technology, 2021, 9(7):2100072.
 [9] NAGUIB M, KOLLMEYER P, EMADI A.Lithium-ion battery pack robust state of charge estimation, cell inconsistency, and balancing:review[J].IEEE Access, 2021, 9:50570-50582.
 [10] FENG X, ZHANG X, XIANG Y.An inconsistency assessment method for backup battery packs based on time -series clustering[J].Journal of Energy Storage, 2020, 31:101666.
 [11] ZHENG Y, GAO W, OUYANG M, et al.State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter[J].Journal of Power Sources, 2018, 383:50-58.
 [12] ZHANG Y, PENG Z, GUAN Y, et al.Prognostics of battery cycle life in the early-cycle stage based on hybrid model[J].Energy, 2021, 221:119901.
 [13] 刘春辉, 任宏斌.基于SOC的动力电池组主动均衡研究[J].储能科学与技术, 2022, 11(2):667-672.LIU Chunhui, REN Hongbin.Research on soc-based active balancing of power battery packs[J].Energy Storage Science and Technology, 2022, 11(2):667-672.
 [14] DURAISAMY T, DEEPA K.Evaluation and comparative study of cell balancing methods for lithium-ion batteries used in electric vehicles[J].International Journal of Renewable Energy Development, 2021, 10(3):471-479.
 [15] BARRERAS J V, DE CASTRO R, WAN Y, et al.A consensus algorithm for multi-objective battery balancing[J].Energies, 2021, 14(14):4279.
 [16] ZUN C Y, PARK S U, MOK H S.New cell balancing charging system research for lithium-ion batteries[J].Energies, 2020, 13(6):1393.
 [17] HUI X, SONG D W, SHI F D, et al.Novel voltage equalisation circuit of the lithium battery pack based on bidirectional flyback converter[J].IET Power Electronics, 2020, 13(11):2194-2200.
 [18] NARAYANASWAMY S, STEINHORST S, LUKASIEWYCZ M, et al.Optimal dimensioning and control of active cell balancing architectures[J].IEEE Transactions on Vehicular Technology, 2019, 68(10):9632-9646.
 [19] 刘征宇, 夏登威, 姚利阳, 等.基于耦合绕组的锂电池组主动均衡方案研究[J].电机与控制学报, 2021, 25(2):54-64.LIU Zhengyu, XIA Dengwei, YAO Liyang, et al.Research on active equalization scheme of lithium battery pack based on coupling winding[J].Electric Machines and Control, 2021, 25(2):54-64.
 [20] HABIB A, HASAN M K, MAHMUD M, et al.A review:Energy storage system and balancing circuits for electric vehicle application[J].IET Power Electronics, 2021, 14(1):1-13.
 [21] DAM S K, JOHN V.Low-frequency selection switch based cell-to-cell battery voltage equalizer with reduced switch count[J].IEEE Transactions on Industry Applications, 2021, 57(4):3842-3851.
 [22] PENG F X, WANG H Y, YU L.Analysis and design considerations of efficiency enhanced hierarchical battery equalizer based on bipolar ccm buck-boost units[J].IEEE Transactions on Industry Applications, 2019, 55(4):4053-4063.
 [23] 郭向伟, 刘震, 康龙云, 等.一种单电感串并联电池组均衡方法[J].电机与控制学报, 2021, 25(12):87-95.GUO Xiangwei, LIU Zhen, KANG Longyun, et al.A single inductor series-parallel battery pack equalization method[J].Electric Machines and Control, 2021, 25(12):87-95.
 [24] KOSEOGLOU M, TSIOUMAS E, JABBOUR N, et al.Highly effective cell equalization in a lithium-ion battery management system[J].IEEE Transactions on Power Electronics, 2020, 35(2):2088-2099.
 [25] ZHANG Z Y, ZHANG L Z, HU L, et al.Active cell balancing of lithium-ion battery pack based on average state of charge[J].International Journal of Energy Research, 2020, 44(4):2535-2548.
 [26] WU Q X, GAO M Y, LIN H P, et al.A bimodal multichannel battery pack equalizer based on a quasi-resonant two-transistor forward converter[J].Energies, 2021, 14(4):1112.
 [27] GHAEMINEZHAD N, OUYANG Q, HU X S, et al.Active cell equalization topologies analysis for battery packs:A systematic review[J].IEEE Transactions on Power Electronics, 2021, 36(8):9119-9135.
 [28] CAO Y L, LI K, LU M.Balancing method based on flyback converter for series-connected cells[J].IEEE Access, 2021, 9:52393-52403.
 [29] UNO M, YOSHINO K.Modular equalization system using dual phase-shift-controlled capacitively isolated dual active bridge converters to equalize cells and modules in series-connected lithium-ion batteries[J].IEEE Transactions on Power Electronics, 2021, 36(3):2983-2995.
 [30] CAO J W, XIA B Z, ZHOU J.An active equalization method for lithium-ion batteries based on flyback transformer and variable step size generalized predictive control[J].Energies, 2021, 14(1):207.
 [31] DAS U K, SHRIVASTAVA P, TEY K S, et al.Advancement of lithium-ion battery cells voltage equalization techniques:A review[J].Renewable and Sustainable Energy Reviews, 2020, 134:110227.
 [32] 华旸, 周思达, 何瑢, 等车用锂离子动力电池组均衡管理系统研究进展[J].机械工程学报, 2019, 55(20):73-84.HUA Yang, ZHOU Sida, HE Rong, et al.Research progress on the balanced management system of automotive lithium-ion power battery pack[J].Journal of Mechanical Engineering, 2019, 55(20):73-84.
 [33] FENG F, HU X, LIU J, et al.A review of equalization strategies for series battery packs:variables, objectives, and algorithms[J].Renewable and Sustainable Energy Reviews, 2019, 116:109464.
 [34] YANG H, ZHOU S D, CUI H G, et al.A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles[J].International Journal of Energy Research, 2020, 44(14):11059-11087.
 [35] 蔡敏怡, 张娥, 林靖, 等.串联锂离子电池组均衡拓扑综述[J].中国电机工程学报, 2021, 41(15):5294-5311.CAI Minyi, ZHANG E, LIN Jing, et al.A review of series lithium-ion battery pack equalization topology[J].Proceedings of the CSEE, 2021, 41(15):5294-5311.
 [36] LV J, SONG W J, FENG Z P, et al.Performance and comparison of equalization methods for lithium ion batteries in series[J].International Journal of Energy Research, 2021, 45(3):4669-4680.
 [37] DAI S, ZHANG F, ZHAO X.Series-connected battery equalization system:A systematic review on variables, topologies, and modular methods[J].International Journal of Energy Research, 2021, 45(14):19709-19728.
 [38] TURKSOY A, TEKE A, ALKAYA A.A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles[J].Renewable and Sustainable Energy Reviews, 2020, 133:110274.
 [39] CARTER J, FAN Z, CAO J.Cell equalisation circuits:A review[J].Journal of Power Sources, 2020, 448:227489.
 [40] ALVAREZ-DIAZCOMAS A, ESTEVEZ-BEN A A, RODRIGUEZ-RESENDIZ J, et al.A review of battery equalizer circuits for electric vehicle applications[J].Energies, 2020, 13(21):5688.
 [41] OMARIBA Z B, ZHANG L J, SUN D B.Review of battery cell balancing methodologies for optimizing battery pack performance in electric vehicles[J].IEEE Access, 2019, 7:129335-129352.
 [42] GALLARDO-LOZANO J, ROMERO-CADAVAL E, MILANES-MONTERO M I, et al.Battery equalization active methods[J].Journal of Power Sources, 2014, 246:934-949.
 [43] YANG R, GAO L, WU T, et al.Comparative study on equalization technology of lithium battery packs for electric vehicle[C/CD]//20195th International Conference on Energy Equipment Science and Engineering (ICEESE), November 29-December, 1, 2019, Harbin, China.Earth and Environmental Science, 2020.
 [44] 王鹿军, 单恩泽.基于动态式双阈值的锂电池组主被动均衡策略[J].电机与控制学报, 2022, 26(1):126-136.WANG Lujun, SHAN Enze.Active-passive equalization strategy for lithium battery pack based on dynamic dual threshold[J].Electric Machines and Control, 2022, 26(1):126-136.
 [45] ZHENG Y, OUYANG M, LU L, et al.Understanding aging mechanisms in lithium-ion battery packs:From cell capacity loss to pack capacity evolution[J].Journal of Power Sources, 2015, 278:287-295.
 [46] 魏芃, 蔡涛, 朝泽云, 等.电池均衡系统的分布式协同一致性控制策略[J].中国电机工程学报, 2021, 41(3):908-921.WEI Peng, CAI Tao, CHAO Zeyun, et al.Distributed cooperative consistency control strategy for battery equalization system[J].Proceedings of the CSEE, 2021, 41(3):908-921.
 [47] 郑岳久.车用锂离子动力电池组的一致性研究[D].北京:清华大学, 2014.ZHENG Yuejiu.Consistency study of lithium-ion power battery packs for vehicles[D].Beijing:Tsinghua University, 2014.
 [48] 汪宜秀, 魏学哲, 房乔华, 等.面向整组寿命最大化的电动汽车电池一致性变化规律及其均衡策略[J].机械工程学报, 2020, 56(22):176-183.WANG Yixiu, WEI Xuezhe, FANG Qiaohua, et al.Battery consistency variation law and its equalization strategy for electric vehicles with a view to maximizing the whole pack life[J].Journal of Mechanical Engineering, 2020, 56(22):176-183.
 [49] SUN W B, LI Y L, LIU L Z, et al.A switched-capacitor battery equalization method for improving balancing speed[J].IET Electric Power Applications, 2021, 15(5):555-569.
 [50] YANG X G, XI L G, GAO Z, et al.Analysis and design of a voltage equalizer based on boost full-bridge inverter and symmetrical voltage multiplier for series-connected batteries[J].IEEE Transactions on Vehicular Technology, 2020, 69(4):3828-3840.
 [51] WANG S C, YANG S Y, YANG W, et al.A new kind of balancing circuit with multiple equalization modes for serially connected battery pack[J].IEEE Transactions on Industrial Electronics, 2021, 68(3):2142-2150.
 [52] WU L, PANG K, ZHENG Y, et al.A multi-module equalization system for lithium-ion battery packs[J].International Journal of Energy Research, 2021, 46(3):2771-2782.
 [53] SU L, WANG Z P, REN Y H.A novel two-steps method for estimation of the capacity imbalance among in-pack cells[J].Journal of Energy Storage, 2019, 26:101031.
 [54] QI X, WANG Y, FANG M, et al.A reduced-component-count centralized equalization system for series-connected battery packs based on a novel integrated cascade topology[J].IEEE Transactions on Industry Applications, 2021, 57(6):6105-6116.
 [55] DONG G Z, YANG F F, TSUI K L, et al.Active balancing of lithium-ion batteries using graph theory and a-star search algorithm[J].IEEE Transactions on Industrial Informatics, 2021, 17(4):2587-2599.
 [56] QI X B, WANG Y, FANG M Z.An integrated cascade structure-based isolated bidirectional DC-DC converter for battery charge equalization[J].IEEE Transactions on Power Electronics, 2020, 35(11):12003-12021.
 [57] WAN L, CHEN Y, ZHOU Y, et al.Design of balanced charging circuit for lithium ion battery[C]//38th Chinese Control Conference (CCC), July 27-30, 2019, Guangzhou, China, IEEE, 2019:6476-6480.
 [58] JIAQIANG E J, ZHANG B, ZENG Y, et al.Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge[J].Energy, 2022, 238:121822.
 [59] SEE K, LIM K C, BATTERNALLY S, et al.Charge based self-equalization for imbalance battery pack in an energy storage management system developing a time-based equalization algorithm[J].IEEE Consumer Electronics Magazine, 2019, 8(2):16-21.
 [60] VAN C N, VINH T N, NGO M-D, et al.Optimal soc balancing control for lithium-ion battery cells connected in series[J].Energies, 2021, 14(10):2875.
 [61] HEIN T, ZIEGLER A, OESER D, et al.A capacity-based equalization method for aged lithium-ion batteries in electric vehicles[J].Electric Power Systems Research, 2021, 191:106898.
 [62] ZHENG Y, OUYANG M, LU L, et al.On-line equalization for lithium-ion battery packs based on charging cell voltages:Part 1.Equalization based on remaining charging capacity estimation[J].Journal of Power Sources, 2014, 247:676-686.
 [63] ZHENG Y, OUYANG M, LU L, et al.On-line equalization for lithium-ion battery packs based on charging cell voltages:Part 2.Fuzzy logic equalization[J].Journal of Power Sources, 2014, 247:460-466.
 [64] SONG L J, LIANG T Y, LU L G, et al.Lithium-ion battery pack equalization based on charging voltage curves[J].International Journal of Electrical Power & Energy Systems, 2020, 115:105516.
 [65] HAN W J, ZOU C F, ZHANG L, et al.Near-fastest battery balancing by cell/module reconfiguration[J].IEEE Transactions on Smart Grid, 2019, 10(6):6954-6964.
 [66] WU X G, CUI Z H, LI X F, et al.Control strategy for active hierarchical equalization circuits of series battery packs[J].Energies, 2019, 12(11):2071.
 [67] OUYANG Q, HAN W J, ZOU C F, et al.Cell balancing control for lithium-ion battery packs:A hierarchical optimal approach[J].IEEE Transactions on Industrial Informatics, 2020, 16(8):5065-5075.
 [68] LEE S, KIM M, BAEK J W, et al.Enhanced switching pattern to improve cell balancing performance in active cell balancing circuit using multi-winding transformer[J].IEEE Access, 2020, 8:149544-149554.
 [69] DING X F, ZHANG D H, CHENG J W, et al.A novel active equalization topology for series-connected lithium-ion battery packs[J].IEEE Transactions on Industry Applications, 2020, 56(6):6892-6903.
 [70] YANG Y, ZHU W C, XIE C J, et al.A layered bidirectional active equalization method for retired power lithium-ion batteries for energy storage applications[J].Energies, 2020, 13(4):832.
 [71] LU J L, WANG Y, LI X.Isolated bidirectional DC-DC converter with quasi-resonant zero-voltage switching for battery charge equalization[J].IEEE Transactions on Power Electronics, 2019, 34(5):4388-4406.
 [72] LA P H, CHOI S J.Novel dynamic resistance equalizer for parallel-connected battery configurations[J].Energies, 2020, 13(13):3315.
 [73] HSIEH Y C, HUANG Y C, CHUANG P C.A charge-equalization circuit with an intermediate resonant energy tank[J].Energies, 2020, 13(24):6566
 [74] WANG X L, CHENG K W E, FONG Y C.Zero current switching switched-capacitors balancing circuit for energy storage cell equalization and its associated hybrid circuit with classical buck-boost[J].Energies, 2019, 12(14):2726.
 [75] LI X, LYU L, GENG G, et al.Power allocation strategy for battery energy storage system based on cluster switching[J].IEEE Transactions on Industrial Electronics, 2022, 69(4):3700-3710.
 [76] KHALID A, HERNANDEZ A, SUNDARARAJAN A, et al.Simulation-based analysis of equalization algorithms on active balancing battery topologies for electric vehicles[M/OL].Cham:Springer, 2020[2022-06-28].https://link.springer.com/chapter/10.1007/978-3-030-32520-6_52#chapter-info.
 [77] WANG B, QIN F F, ZHAO X B, et al.Equalization of series connected lithium-ion batteries based on back propagation neural network and fuzzy logic control[J].International Journal of Energy Research, 2020, 44(6):4812-4826.
 [78] LIAO H T, JIANG F, JIN C, et al.Lithium-ion battery soc equilibrium:an artificial potential field-based method[J].Energies, 2020, 13(21):5691.
 [79] WU T Z, JI F, LIAO L, et al.Voltage-soc balancing control scheme for series-connected lithium-ion battery packs[J].Journal of Energy Storage, 2019, 25:100895.
 [80] ZHANG H K, WANG Y F, QI H, et al.Active battery equalization method based on redundant battery for electric vehicles[J].IEEE Transactions on Vehicular Technology, 2019, 68(8):7531-7543.
 [81] ZHANG Y L, HONG Y, CHOI K.Optimal energy-dissipation control for SOC based balancing in series connected Lithium-ion battery packs[J].Multimedia Tools and Applications, 2020, 79(23-24):15923-15944.
 [82] CHEN X, HU G D, GUO F, et al.Switched energy management strategy for fuel cell hybrid vehicle based on switch network[J].Energies, 2020, 13(1):247.
 [83] LI X L, XU J P, XU S G, et al.Modularised non-isolated two-switch equaliser using full-wave voltage multiplier for series-connected battery/super-capacitor[J].IET Power Electronics, 2019, 12(4):869-877.
 [84] LI D M, WU Z J, ZHAO B, et al.An improved droop control for balancing state of charge of battery energy storage systems in ac microgrid[J].IEEE Access, 2020, 8:71917-71929.
 [85] ROY D, NARAYANASWAMY S, PROBSTL A, et al.Optimal scheduling for active cell balancing[C]//2019 IEEE Real-Time Systems Symposium (RTSS), December 03-06, 2019, IEEE, 2020:120-132.
 [86] WEI Y, DAI S, WANG J, et al.Switch matrix algorithm for series lithium battery pack equilibrium based on derived acceleration information Gauss-Seidel[J].Mathematical Problems in Engineering, 2019, 2019:5159497.
 [87] PIROOZ A, FIROUZ Y, BERECIBAR M, et al.Battery voltage equalisation using single-phase cascaded H-bridge converters[J].IET Power Electronics, 2020, 13(18):4158-4167.
 [88] CHEN Y, SHEN T, YANG S Y, et al.A path planning strategy with ant colony algorithm for series connected batteries[J].Electronics, 2020, 9(11):1816.
 [89] SUN J L, LIU W, TANG C Y, et al.A novel active equalization method for series-connected battery packs based on clustering analysis with genetic algorithm[J].IEEE Transactions on Power Electronics, 2021, 36(7):7853-7865.
 [90] 李军, 黄志祥, 唐爽.基于K最近邻遗传算法的电池均衡策略[J].汽车安全与节能学报, 2019, 10(4):525-530.LI Jun, HUANG Zhixiang, TANG Shuang.Battery equalization strategy based on K-nearest neighbor genetic algorithm[J].Journal of Automotive Safety and Energy, 2019, 10(4):525-530.
 [91] HOQUE M M, HANNAN M A, MOHAMED A.Charging and discharging model of lithium-ion battery for charge equalization control using particle swarm optimization algorithm[J].Journal of Renewable and Sustainable Energy, 2016, 8(6):065701.
 [92] WU T, QI Y, LIAO L, et al.Research on equalization strategy of lithium-ion batteries based on fuzzy logic control[J].Journal of Energy Storage, 2021, 40:102722.
 [93] IMTIAZ A M, KHAN F H."Time Shared Flyback Converter" Based regenerative cell balancing technique for series connected li-ion battery strings[J].IEEE Transactions on Power Electronics, 2013, 28(12):5960-5975.
 [94] LIU K L, YANG Z L, TANG X P, et al.Automotive battery equalizers based on joint switched-capacitor and buck-boost converters[J].IEEE Transactions on Vehicular Technology, 2020, 69(11):12716-12724.
 [95] SHANG Y L, ZHANG Q, CUL N X, et al.Multicell-to-multicell equalizers based on matrix and half-bridge LC converters for series-connected battery strings[J].IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2):1755-1766.
 [96] 王敏旺, 吴华伟, 刘祯.一种面向电池组均衡模型的定量评价体系[J].储能科学与技术, 2021, 10(1):271-279.WANG Minwang, WU Huawei, LIU Zhen.A quantitative evaluation system for battery pack equilibrium model[J].Energy Storage Science and Technology, 2021, 10(1):271-279.
 [97] LAI X, CHEN Q, TANG X, et al.Critical review of life cycle assessment of lithium-ion batteries for electric vehicles:A lifespan perspective[J].eTransportation, 2022, 12:100169.
 |