• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (23): 39-50.doi: 10.3901/JME.2022.23.039

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于自适应神经网络的多模式小失效概率分析方法

王攀1, 辛富康1, 邓亚权2, 张浩2   

  1. 1. 西北工业大学力学与土木建筑学院 西安 710129;
    2. 中航通飞华南飞机工业有限公司 珠海 519030
  • 收稿日期:2021-12-21 修回日期:2022-08-19 出版日期:2022-12-05 发布日期:2023-02-08
  • 通讯作者: 王攀(通信作者),男,1988年出生,博士研究生,副教授。主要研究方向为结构机构可靠性及灵敏度分析,系统可靠性建模与 分析。E-mail:panwang@nwpu.edu.cn
  • 作者简介:辛富康,男,1997年出生,硕士研究生。主要研究方向为结构机构可靠性及灵敏度分析,系统可靠性建模与分析。E-mail:xinfukang@mail.nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(51975473)和航空科学基金(201929053001)资助项目。

Adaptive Neural Network Based Approach for the Analysis of Small Failure Probability with Multiple Modes

WANG Pan1, XIN Fukang1, DENG Yaquan2, ZHANG Hao2   

  1. 1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129;
    2. AVIC General Aircraft Huanan Industry Co. Ltd., Zhuhai 519030
  • Received:2021-12-21 Revised:2022-08-19 Online:2022-12-05 Published:2023-02-08

摘要: 针对水陆两栖飞机的襟翼运动机构小失效概率可靠性分析问题,首先通过开展气动载荷模拟分析得到注水灭火典型剖面的载荷历程曲线,并将其简化加载于襟翼运动机构模型中进行仿真分析。然后考虑摩擦系数、装配位置等因素的随机不确定性,建立了具有襟翼机构卡滞和运动精度不足两种失效模式的可靠性模型。为了提升分析效率,建立了一种基于自适应神经网络的可靠性分析方法。通过引入超球抽样使得样本点在整个标准正态空间内均匀分布,利用最优超球面将样本空间进行划分,大大缩减了样本空间。同时提出了一种新的学习函数来避免对不重要的区域进行探索,以找到最佳训练点进行模型更新。最后通过数值算例验证算法的计算效率和精度,进而实现了水陆两栖飞机襟翼运动机构可靠性的高效高精度分析。

关键词: 襟翼, 运动机构, 可靠性, 超球抽样, 神经网络

Abstract: For the small failure probability reliability assessment of the flap mechanism of amphibious aircraft, firstly, the load curve for the water injection and fire extinguishing profile is obtained by carrying out an aerodynamic simulation analysis, which is simplified and loaded into the model of flap motion mechanism. Then, the random uncertainty of friction coefficient and assembly position is considered, and the reliability models of two failure modes including flap mechanism jamming and insufficient movement accuracy are established. To improve the computational efficiency, a reliability analysis method based on the adaptive neural network is proposed. The hypersphere sampling is introduced to make the sample points evenly distributed in the whole standard normal space, and the sample space is divided by using the optimal hypersphere, which greatly reduces the sample space. Meanwhile, a new learning function is proposed to avoid exploring unimportant areas, then the best training point is found to update the surrogate model. Finally, a numerical example is given to verify the efficiency and accuracy of the algorithm, and then an efficient and high-precision reliability analysis of the flap motion mechanism of amphibious aircraft is realized.

Key words: flaps, motion mechanism, reliability, hypersphere sampling, neural network

中图分类号: