机械工程学报 ›› 2022, Vol. 58 ›› Issue (21): 92-113.doi: 10.3901/JME.2022.21.092
熊万里1,2, 汪剑1, 陈振宇2, 孙文彪1, 薛海南1, 汤秀清2
收稿日期:
2022-01-14
修回日期:
2022-07-01
出版日期:
2022-11-05
发布日期:
2022-12-23
通讯作者:
熊万里(通信作者),男,1971年出生,博士,教授,博士研究生导师。主要研究方向为高速离心式燃料电池空压机、高速轴承理论及应用、超高速超精密电主轴和液体静压主轴技术。E-mail:wan369@vip.sina.com
基金资助:
XIONG Wanli1,2, WANG Jian1, CHEN Zhenyu2, SUN Wenbiao1, XUE Hainan1, TANG Xiuqing2
Received:
2022-01-14
Revised:
2022-07-01
Online:
2022-11-05
Published:
2022-12-23
摘要: 箔片气体动压轴承具有转速高、摩擦功耗低、无油润滑以及良好的减振性能等优势,已在飞机换气系统和曝气鼓风机等领域广泛应用。近年来随着全球“碳达峰碳中和”战略的提出和实施,氢燃料电池汽车等成为产业热点,箔片气体动压轴承在燃料电池空压机领域的应用呈现“井喷”态势,但箔片轴承在适应燃料电池汽车复杂工况所必须具备的长寿命、高抗振性及高可靠性等方面,还远远没有得到充分验证,目前仍处于路况验证和技术迭代阶段。因此有必要在新工况和新性能需求大背景下,对箔片气体动压轴承的现有研究成果进行系统梳理和深入分析。介绍了箔片气体动压轴承的结构及在燃料电池空压机中的应用;评述了箔片气体动压轴承的高速特性、比承载能力、动力学稳定性以及启停寿命等关键性能指标及当前发展水平;分别从箔片气体动压轴承理论建模、气固耦合特性仿真算法、气膜热特性及温升控制、轴承转子系统动力学稳定性、箔片轴承抗振性及疲劳寿命、箔片表面涂层技术及启停寿命、箔片轴承动态性能测试与试验技术等方面,对箔片轴承关键技术进行了系统分析和综述;最后结合燃料电池汽车工况对高速离心式空压机的性能需求,对箔片气体轴承关键技术的发展趋势进行了预测和展望。
中图分类号:
熊万里, 汪剑, 陈振宇, 孙文彪, 薛海南, 汤秀清. 箔片气体动压轴承研究进展综述[J]. 机械工程学报, 2022, 58(21): 92-113.
XIONG Wanli, WANG Jian, CHEN Zhenyu, SUN Wenbiao, XUE Hainan, TANG Xiuqing. Review of Research Status and Development of Foil Air Bearings[J]. Journal of Mechanical Engineering, 2022, 58(21): 92-113.
[1] HESHMAT H, WALOWIT J A, PINKUS O. Analysis of gas-lubricated foil journal bearings[J]. Journal of Tribology, 1983, 105(4):647-655. [2] HESHMAT H, WALOWIT J A, PINKUS O. Analysis of gas lubricated compliant thrust bearings[J]. Journal of Lubrication Technology, 1983, 105(4):638-646. [3] KU C P, HESHMAT H. Compliant foil bearing structural stiffness analysis-Part II:Experimental investigation[J]. Journal of Tribology, 1993, 115(3):364-369. [4] JONES A M. Adjustable tension foil bearing:US, US4815864[P]. 1989-03-28. [5] SILVER A, WENBAN J R. Foil bearing:US, US4178046[P]. 1979-12-11. [6] SONG J H, KIM D. A new foil gas bearing with compression springs as compliant structure for microturbomachinery applications[C]//Turbo Expo:Power for Land, Sea, and Air, 2006, 419-428. [7] LEE Y B, KIM C H, JO J H, et al. Air foil bearing having a porous foil:US, US2006043736[P]. 2006-09-26. [8] KANEKO S, MIYANO Y, WATANABE T. Static and dynamic characteristics of a micro gas turbine rotor supported by radial foil bearings[C]//The Fifth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 2005:89-92. [9] 虞烈. 可压缩气体润滑与弹性箔片气体轴承技术[M]. 北京:科学出版社, 2011. YU Lie. Compressible gas lubrication and elastic foil gas bearing technology[M]. Beijing:Science Press, 2011. [10] 大森直陆. 径向箔轴承:日本, CN103717927A[P]. 2014-04-09. DASEN Z. Radial foil bearing:Japan, CN103717927A[P]. 2014-04-09. [11] 吉野真人, 藤原宏树. 箔片轴承:日本, CN103827524A[P]. 2014-05-28. YOSHINO I, FUJIWAPA A. Foil bearing:Japan, CN103827524A[P]. 2014-05-28. [12] 吉野真人. 推力箔片轴承:日本, CN103717926A[P]. 2014-04-09. YOSHINO I. Thrust foil bearing:Japan, CN103717926A[P]. 2014-04-09. [13] 冯凯, 胡小强, 赵雪源, 等. 三瓣式气体箔片径向轴承的静动态特性[J]. 中国机械工程, 2017, 28(15):1826-1835. FENG Kai, HU Xiaoqiang, ZHAO Xueyuan, et al. Static and dynamic performances of a three-pad gas foil journal bearing[J]. China Mechanical Engineering, 2017, 28(15):1826-1835. [14] BOSLEY R W. Compliant foil hydrodynamic fluid film radial bearing:US, US5427455A[P]. 1995-11-10. [15] A. 福格特. 箔轴承、用于调节箔轴承的间隙几何形状的方法以及箔轴承的相应制造方法:德国, CN107110199A[P]. 2017-08-29. A FU Gete. Foil bearing, method for adjusting clearance geometry of foil bearing and corresponding manufacturing method of foil bearing:Germany, CN107110199A[P]. 2017-08-29. [16] 刘占生, 许怀锦. 新型可调悬臂式动压气体弹性箔片轴承:中国, CN101054995A[P]. 2007-10-17. LIU Zhansheng, XU Huaijin. New type adjustable cantilever dynamic pressure gas elastic foil bearing:China, CN101054995A[P]. 2007-10-17. [17] 刘占生, 闫佳佳. 平箔片轴向厚度变化的气体径向箔片轴承:中国, CN106402146A[P]. 2017-02-15. LIU Zhansheng, YAN Jiajia. Gas radial foil bearing with flat foil axial thickness variation:China, CN106402146A[P]. 2017-02-15. [18] 耿海鹏, 吕浩, 李昊, 等. 一种具有自适应调节的大承载弹性箔片气体轴承:中国, CN108425940A[P]. 2018-08-21. GENG Haipeng, LÜ Hao, LI Hao, et al. The utility model relates to a large bearing elastic foil gas bearing with adaptive adjustment:China, CN108425940A[P]. 2018-08-21. [19] 耿海鹏, 杨柏松, 刘俊里, 等. 一种预紧可调的弹性箔片气体轴承:中国, CN103291750A[P]. 2013-09-11. GENG Haipeng, YANG Baisong, LIU Junli, et al. The utility model relates to a pretension adjustable elastic foil gas bearing:China, CN103291750A[P]. 2013-09-11. [20] 杨柏松, 田嘉乐, 冯圣, 等.一种底层可倾的多瓦搭接带预紧弹性箔片气体轴承:中国, CN109707737A[P]. 2019-05-03. YANG Baisong, TIAN Jiale, FENG Sheng, et al. A bottom tiltable multi tile lap with pretensioned elastic foil gas bearing:China, CN109707737A[P]. 2019-05-03. [21] FENG K, ZHAO X, HUO C, et al. Analysis of novel hybrid bump-metal mesh foil bearings[J]. Tribology International, 2016, 103:529-539. [22] FENG K, LIU W, YU R, et al. Analysis and experimental study on a novel gas foil bearing with nested compression springs[J]. Tribology International, 2017, 107:65-76. [23] 陈振宇, 熊万里, 张虎, 等. 变气隙箔片轴承和高速电机:中国, CN110566572A[P].2019-12-13. CHEN Zhenyu, XIONG Wanli, ZHANG Hu, et al.Variable air gap foil bearings and high speed motors:China, CN110566572A[P].2019-12-13. [24] 张虎, 熊万里, 陈振宇, 等. 箔片气体动压轴承和高速电机:中国, CN110594286A[P].2019-12-20. ZHANG Hu, XIONG Wanli, CHEN Zhenyu, etal.Foil gas dynamic pressure bearings and high speed motors:China, CN110594286A[P].2019-12-20. [25] 熊万里, 张虎, 薛建, 等. 离心式压缩机和氢燃料电池系统:中国, CN110594170A[P]. 2019-12-20. XIONG Wanli, ZHANG Hu, XUE Jian, etal.Centrifugal compressor and hydrogen fuel cell system:China, CN110594170A[P].2019-12-20. [26] 熊万里, 张虎, 陈振宇, 等. 离心式压缩机轴系结构和离心式压缩机:中国, CN110439847A[P]. 2019-11-12. XIONG Wanli, ZHANG Hu, CHEN Zhenyu, et al. Centrifugal compressor shafting structure and centrifugal compressor:China, CN110439847A[P]. 2019-11-12. [27] HESHMAT H, WALTON J F, CORTE C D, et al. Oil-free turbocharger demonstration paves way to gas turbine engine applications[C]//Turbo Expo:Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000, 78545:V001T04A008. [28] HESHMAT H. Advancements in the performance of aerodynamic foil journal bearings:high speed and load capability[J]. Journal of Tribology, 1994, 116(2):287-294. [29] SALEHI M, HESHMAT H, WALTON II J F, et al. Operation of a mesoscopic gas turbine simulator at speeds in excess of 700, 000 rpm on foil bearings[J]. ASME Journal of Engineering for Gas Turbine and Power, 2007, 129(1):170-176. [30] LEE Y B, KWAK Y S, KIM C H, et al. Feasibility study of 100 watts class micro turbocharger for micro gas turbine engine[J]. Power MEMS, 2007, 221-224. [31] ISOMURA K, TANAKA S, TOGO S I, et al. Development of high speed micro-gas bearing for 3-dimensional micro-turbo machines[J]. Journal of Micromechanics and Microengineering, 2004, 15:222-227. [32] 侯予, 熊联友, 王瑾, 等. 箔片式动压径向气体轴承的发展[J]. 润滑与密封, 2000(2):2-4. HOU Yu, XIONG Lianyou, WANG Jin, et al. The development of aerodynamic foil journal bearing[J]. Lubrication Engineering, 2000(2):2-4. [33] 侯予, 王秉琛, 熊联友, 等. 平箔式箔片径向气体轴承的试验研究[J]. 西安交通大学学报, 1999(3):63-66. HOU Yu, WANG Bingchen, XIONG Lianyou, et al. Experimental study of plate-foil journal gas bearings[J]. Journal of Xi'an Jiaotong University, 1999(3):63-66 [34] 侯予, 熊联友, 王瑾, 等. 低温透平膨胀机用全动压气体轴承的设计与试验研究[J]. 深冷技术, 2002(1):6-9. HOU Yu, XIONG Lianyou, WANG Jin, et al. Design and experimental study of self-acting gas bearings for cryogenic turboexpanders[J]. Cryogenic Technology, 2002(1):6-9. [35] 王恒, 熊联友, 侯予, 等. 全动压气体轴承低温透平膨胀机的开发[J]. 低温工程, 2002(2):8-10. WANG Heng, XIONG Lianyou, HOU Yu, et al. The study of self-acting gas bearing cryogenics turboexpander[J]. Cryogenics, 2002(2):8-10. [36] HESHMAT H, WALTON J F, TOMASZEWSKI M J. Demonstration of a turbojet engine using an air foil bearing[C]//Turbo Expo:Power for Land, Sea, and Air, 2005:919-926. [37] HESHMAT H, SHAPIRO W, GRAY S. Development of foil journal bearings for high load capacity and high speed whirl stability[J]. Journal of Tribology, 1982, 104(2):149-156. [38] HESHMAT H. Advancements in the performance of aerodynamic foil journal bearings:High speed and load capability[J]. Journal of Tribology, 1994, 116(2):287-294. [39] YAN J, ZHANG G, LIU Z, et al. Performance of a novel foil journal bearing with surface micro-grooved top foil[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2018, 232(9):1126-1139. [40] RADIL K, HOWARD S, DYKAS B. The role of radial clearance on the performance of foil air bearings[J]. Tribology Transactions, 2002, 45(4):485-490. [41] LI Y, LEI G, SUN Y, et al. Effect of environmental pressure enhanced by a booster on the load capacity of the aerodynamic gas bearing of a turbo expander[J]. Tribology International, 2017, 105:77-84. [42] 张建波. 高速涡轮发电转子振动特性试验研究[D]. 北京:华北电力大学, 2015. ZHANG Jianbo. The experimental study on vibration characteristics of high-speed turbine rotor with generator[D]. Beijing:North China Electric Power University, 2015. [43] 十合晋一. 气体轴承的设计与制造[M]. 哈尔滨:黑龙江科学技术出版社, 1988. KYOKUSHIN, LIU Xiang, XU Zhenji. Design and manufacture of gas bearings[M]. Harbin:Heilongjiang Science and Technology Press, 1988. [44] CHERUHIM J I. Hydrodynamic foil bearings:US, US3809443[P]. 1974-05-07. [45] 姚金勇, 张坤, 姜同敏, 等. 一种箔片动压径向气体轴承磨损寿命的预测方法:中国, CN102589885A[P]. 2012-07-18. YAO Jinyong, ZHANG Kun, JIANG Tongmin, et, al. A method for predicting wear life of foil dynamic pressure radial gas bearing:China, CN102589885A[P].2012-07-18. [46] DELLACORTE C. A new foil air bearing test rig for use to 700℃and 70, 000 r/min[J]. Tribology Transactions, 1998, 41(3):335-340. [47] 绳春晨, 杨榆, 谢洪涛, 等.箔片动压轴承的研制及在机载环控涡轮的应用[J]. 润滑与密封, 2020, 45(5):86-90. SHENG Chunchen, YANG Yu, XIE Hongtao, et al. Development and application of aerodynamic foil bearings in high-speed turbo-machinery of airborne ECS[J]. Lubrication Engineering, 2020, 45(5):86-90. [48] WALOWIT J A, ANNO J N, HAMROCK B J. Moderndevelopments in lubrication mechanics[M]. London:Applied Science Publishers Ltd, 1975. [49] KU C P, HESHMAT H. Compliant foil bearing structural stiffness analysis:Part I-theoretical model including strip and variable bump foil[J]. Journal of Tribology, 1992, 144(2):394-400. [50] CARPINO M, PENG JP. Theoretical performance of a hydrostatic foil bearing[J]. Journal of Tribology, 1994, 116(1):83-89. [51] CARPINO M, MEDVETZ L A, PENG J P. Effects of membrane stresses in the prediction of foil bearing performance[J]. Tribology Transactions, 1994, 37(1):43-50. [52] LEZ L S, ARGHIR M, FRENE J. A new bump-type foil bearing structure analytical model[J]. Journal of Engineering for Gas Turbine and Power, 2007, 129(4):1047-1057. [53] IORDANOFF I. Analysis of an aerodynamic compliant foil thrust bearing:Method for a rapid design[J]. Journal of Tribology, 1999, 121(4):816-822. [54] LEE Y B, PARK D J, KIM C H, et al. Operating characteristics of the bump foil journal bearings with top foil bending phenomenon and correlation among bump foils[J]. Tribology International, 2008, 41(4):221-233. [55] FENGK, KANEKO S. Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model[J]. Journal of Tribology, 2010, 132(2):021706. [56] LEE D H, KIM Y C, KIM K W. The effect of coulomb friction on the static performance of foil journal bearings[J]. Tribology International, 2010, 43(5-6):1065-1072. [57] 刘占生, 徐方程, 张广辉, 等. 基于二维厚板模型的波箔片轴承静特性[J]. 航空动力学报, 2012, 27(6):1405-1415. LIU Zhansheng, XU Fangcheng, ZHANG Guanghui, et al. Static characterization of bump-type gas foil bearing:intergration of top foil 2-D thick plate mode[J]. Journal of Aerospace Power, 2012, 27(6):1405-1415. [58] 徐方程, 刘占生, 张广辉, 等. 箔片结构库仑摩擦效应对径向箔片轴承特性的影响[J]. 航空动力学报, 2013, 28(8):1865-1874. XU Fangcheng, LIU Zhansheng, ZHANG Guanghui, et al. Effects of Coulomb friction in foil structure on foil journal bearing performance[J]. Journal of Aerospace Power, 2013, 28(8):1865-1874. [59] DU J, ZHU J, BING L, et al. The effect of area contact on the static performance of multileaf foil bearings[J]. Tribology Transactions, 2015, 58(4):592-601. [60] LI C, DU J, YAO Y. Modeling of a multi-layer foil gas thrust bearing and its load carrying mechanism study[J]. Tribology International, 2017, 114:172-185. [61] ARGHIR M, BENCHEKROUN O. A simplified structural model of bump-type foil bearings based on contact mechanics including gaps and friction[J]. Tribology International, 2019:129-144. [62] GU Y, REN G, ZHOU M, et al. A fully coupled elastohydrodynamic model for static performance analysis of gas foil bearings[J]. Tribology International, 2020, 147. [63] BRAUN M J, CHOY F K, DZODZO M, et al. Two-dimensional dynamic simulation of a continuous foil bearing[J]. Tribology International, 1996, 29(1):61-68. [64] 虞烈, 戚社苗, 耿海鹏. 弹性箔片空气动压轴承的完全气固润滑解[J]. 中国科学E辑:工程科学材料科学, 2005(7):746-760. YU Lie, QI Shemiao, GENG Haipeng. Complete aeroelastic lubrication solution of elastic foil aerodynamic bearing[J]. Science in China Ser. E Engineering & Materials Science, 2005(7):746-760. [65] PAOURIS L I, BOMPOS D A, NIKOLAKOPOULOS P G. Simulation of static performance of air foil bearings using coupled fem and cfd techniques[C]//ASME Igti Turboexpo, 2013. [66] RAVIKOVICH Y A, ERMILOV Y I, PUGACHEV A O, et al. Prediction of stiffness coefficients for foil air bearings to perform rotordynamic analysis of turbomachinery[C]//Proceedings of the 9th IFTOMMInternational Conference on Rotor Dynamics, 2015:1277-1288. [67] CASTELLI V, ELROD H G. Solution of the stability problem for 360 deg self-acting gas-lubricated bearings[J]. Journal of Fluids Engineering, 1965, 87(1):199-210. [68] CASTELLI V, MCCABE J T. Transient dynamics of a tilting pad gas bearing system[J]. Journal of Tribology, 1967, 89(4):499-507. [69] CASTELLI V, STEVENSON C H. A semi-implicit numerical method for treating the time transient gas lubrication equation[R]. Mechanical Technology Lncorporated, 1967. [70] ZHANG G H, SUN Y, LIU Z S, et al. Dynamic characteristics of self-acting gas bearing-flexible rotor coupling system based on the forecasting orbit method[J]. Nonlinear Dynamics, 2012, 69(1-2):341-355. [71] YANG S P, FANG X Q, ZHU C S. Nonlinear dynamic analysis of worn gas foil bearings[J]. Mechanics Based Design of Structures and Machines, 2021(1):1-19. [72] SALEHI M, SWANSON E, HESHMAT H. Thermal features of compliant foil bearings-theory and experiments[J]. Journal of Tribology, 2001, 123:566-71. [73] PENG Z C, KHONSARI M M. A thermohydrodynamic analysis of foil journal bearings[J]. Journal of Tribology, 2006, 128(3):534-541. [74] SIM K, KIM D. Thermohydrodynamic analysis of compliant flexure pivot tilting pad gas Bearings[J]. Journal of Engineering Gas Turbines and Power, 2008, 130:032502. [75] SIM K, KIM T H. Thermohydrodynamic analysis of bump-type gas foil bearings using bump thermal contact and inlet flow mixing models[J]. Tribology International, 2012, 48:137-148. [76] AKSOY S, AKSIT M F. A fully coupled 3d thermo-elastohydrodynamics model for a bump-type compliant foil journal bearing[J]. Tribology International, 2015, 82:110-122. [77] 李长林, 杜建军, 姚英学. 波箔气体轴承温度场计算与动静态性能分析[J]. 哈尔滨工业大学学报, 2017, 49(1):46-52. LI Changlin, DU Jianjun, YAO Yingxue. Temperature calculation and static and dynamic characteristics analysis of bump foil gas bearing[J]. Journal of Harbin Institute of Technology, 2017, 49(1):46-52. [78] ANDRÉS L S, KIM T H, RYU K. Thermal management and rotor dynamic performance of a hot rotor-gas foil bearings system. Part 2:Predictions versus test data[C]//ASME Turbo Expo:Power for Land, Sea, 2010, 263-271. [79] ANDRÉS L S, RYU K, KIM T H. Thermal management and rotor dynamic performance of a hot rotor-gas foil bearings system. Part II:Predictions versus test data[J]. Journal of Engineering for Gas Turbine and Power, 2011, 133(6):062502.1.1-062502-8. [80] 冯凯, 李映宏, 张凯, 等. 新型三瓣式径向箔片气体动压轴承热特性分析[J]. 湖南大学学报, 2020, 47(10):35-44. FENG Kai, LI Yinghong, ZHANG Kai, et al. Thermal characteristic analysis of novel three-pad radial gas foil hydrodynamic bearings[J]. Journal of Hunan University, 2020, 47(10):35-44. [81] HESHMAT H, WALTON JF, TOMASZEWSKI M J. Demonstration of a turbojet engine using an air foil bearing[J]. Turbo Expo Power for Land, Sea, and Air, 2005, 919-926. [82] ANDRES L S, KIM T H. Thermohydrodynamic analysis of bump type gas foil bearings:A model anchored to test data[J]. Journal of Engineering Gas Turbines and Power, 2010, 132:042504. [83] KIM T H, ANDRES L S. Thermohydrodynamic model predictions and performance measurements of bump-type foil bearing for oil-free turboshaft engines in rotorcraft propulsion systems[J]. Journal of Tribology, 2010, 132:011701. [84] RYU K, ANDRES L S. Effect of cooling flow on the operation of a hot rotor-gas foil bearing system[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition, 2012, 134(10):102511. [85] KU C R, HESHMAT H. Compliant foil bearing structural stiffness analysis:Part I-theoretical model including strip and variable bump foil geometry[J]. Journal of Tribology, 1992, 114(2):394-400. [86] KU C R, HESHMAT H. Structural stiffness and coulomb damping in compliant foil journal bearings:theoretical considerations[J]. Tribology Transactions, 1994, 37(3), 525-533. [87] 虞烈. 弹性箔片轴承的气弹润滑解[J]. 西安交通大学学报, 2004(3):327-330. YU Lie. Solution of elasto-aerodynamic lubrication for compliant foil bearings[J]. Journal of Xi'an Jiaotong University, 2004(3):327-330. [88] 戚社苗, 耿海鹏, 虞烈. 动压气体轴承的动态刚度和动态阻尼系数[J]. 机械工程学报, 2007(5):91-98. QI Shemiao, GENG Haipeng, YU Lie. Dynamic stiffness and damping coefficient of dynamic pressure gas bearings[J]. Journal of Mechanical Engineering, 2007(5):91-98. [89] SCHIFFMANN J, SPAKOVSZKY Z S. Foil bearing design guidelines for improved stability[J]. Journal of Tribology, 2013, 135(1):11103. [90] HASSAN M B, BONELLO P. A new modal-based approach for modelling the bump foil structure in the simultaneous solution of foil-air bearing rotor dynamic problems[J]. Journal of Sound and Vibration, 2017, 396:255-273. [91] KIM D. Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and bump stiffness distributions[J]. Journal of Tribology, 2007, 129(2):354-364. [92] BOU-SAID B, GRAU G, IORDANOFF I. On nonlinear rotor dynamic effects of aerodynamic bearings with simple flexible rotors[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(1):12503. [93] LARSEN J S, SANTOS I F, VON OSMANSKI S. Stability of rigid rotors supported by air foil bearings:Comparison of two fundamental approaches[J]. Journal of Sound and Vibration, 2016, 381:179-191. [94] LAI TW, GUO Y, ZHAO Q, et al. Numerical and experimental studies on stability of cryogenic turbo-expander with protuberant foil gas bearings[J]. Cryogenics, 2018, 96(13):62-74. [95] GUO ZY, FENG K, LIU TY, et al. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings:Effects of gas film and foil structure on sub-synchronous vibrations[J]. Mechanical Systems & Signal Processing, 2018, 107(7):549-566. [96] 宋宜强. 箔片动压气体轴承的非线性动态响应的研究[D]. 哈尔滨:哈尔滨工业大学, 2020. SONG Yiqiang. Research on nonlinear dynamic response of foil air bearings[D]. Harbin:Harbin Institute of Technology, 2020. [97] ANDRÉS L S, CHIRATHADAM T A. A metal mesh foil bearing and a bump-type foil bearing:Comparison of performance for two similar size gas bearings[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(10):102501. [98] ANDRÉS L S, CHIRATHADAM T A. Metal mesh foil bearing:Effect of motion amplitude, rotor speed, static load, and excitation frequency on force coefficients[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(12):122503. [99] HOU Y, CHEN S, CHEN R, et al. Numerical study on foil journal bearings with protuberant foil structure[J]. Tribology International, 2011, 44(9):1061-1070. [100] LYU P, FENG K, ZHU B H, et al. The performance evaluation of the promising high-stability foil bearings basing with flexure pivot tilting pads[J]. Mechanical Systems and Signal Processing, 2019, 134:106313. [101] LUND J W. The stability of an elastic rotor in journal bearings with flexible, damped supports[J]. Journal of Applied Mechanics, 1965, 32(4):911-920. [102] GU Y, MA Y, REN G. Stability and vibration characteristics of a rotor-gas foil bearings system with high-static-low-dynamic-stiffness supports[J]. Journal of Sound and Vibration, 2017, 397:152-170. [103] 陈振宇, 熊万里, 张虎, 等. 平箔组件、气体动压轴承和高速电机:中国, CN110594290A[P]. 2019-12-20. CHEN Zhenyu, XIONG Wanli, ZHANG Hu, et al.Flat foil assembly, pneumatic bearing and high speed motor:China, CN110594290A[P]. 2019-12-20. [104] 熊万里, 陈振宇, 张虎, 等. 气体动压轴承和高速电机:中国, CN110594285A[P]. 2019-12-20. XIONG Wanli, CHEN Zhenyu, ZHANG Hu, et al.Pneumatic bearing and high speed motor:China, CN110594285A[P]. 2019-12-20. [105] FENG K, GUAN H Q, ZHAO Z L, et al. Active bump-type foil bearing with controllable mechanical preloads[J]. Tribology International, 2017, 120:187-202. [106] SADRI H, SCHLUMS H, SINAPIUS M. Design characteristics of an aerodynamic foil bearing with adaptable bore clearance[C]//ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition, 2018. [107] PARK J, SIM K. A feasibility study of controllable gas foil bearings with piezoelectric materials via rotordynamic model predictions[J]. Journal of Engineering for Gas Turbines and Power, 2018, 141(2). [108] MIYOSHI K. Solid lubricants and coatings for extreme environments:State-of-the-art survey[R]. NASA/TM-2007-214668. [109] SLINEY H E. Plasma-sprayed metal-glass fluoride coatings for lubrication to 900℃[J]. Tribology Transactions, 1974, 17(3):182-189. [110] DELLACORTE C, LUKASZEWICZ V, VALCO M J, et al. Performance and durability of high temperature foil air bearings for oil-free turbomachinery[J]. Tribology Transactions, 2000, 43(4):774-780. [111] DELLACORTE C. The evaluation of a modified chrome oxide based high temperature solid lubricant coating for foil gas bearings[J]. Tribology Transactions, 2000, 43(2):257-262. [112] RADIL K C, DELLACORTE C. The effect of journal roughness and foil coatings on the performance of heavily loaded foil journal bearings[J]. Tribology Transactions, 2002, 45(2):199-204. [113] DELLACORTE C, ZALDANA A R, RADIL K C. A systems approach to the solid lubrication of foil bearings for oil-free turbomachinery[J]. Journal of Tribology, 2004, 126(1):200-207. [114] JAHANMIR S, HESHMAT H, HESHMAT C, et al. Evaluation of DLC coatings for high-temperature foil bearing applications[J]. Journal of Tribology, 2009, 131(1):21-32 [115] HESHMAT H, HRYNIEWICZ P, WALTON J F, et al. Low-friction wear resistant coatings for high-temperature foil bearings[J]. Tribology International, 2005, 38(11):1059-1075. [116] 侯予, 朱朝辉, 姚艳霞, 等. 高速动压气体轴承箔片材料表面处理的探讨[J]. 润滑与密封, 2003(4):13-15. HOU Yu, ZHU Chaohui, YAO Yanxia, et al. The application of surface treatment to foil metal of high-speed aerodynamic gas bearing[J]. Lubrication Engineering, 2003(4):13-15. [117] 丁春华, 王亚平, 周敬恩. 粉末冶金法制备NiCr基高温自润滑合金PM304涂层[J]. 金属学报, 2006(11):1212-1216. DING Chunhua, WANG Yaping, ZHOU Jingen. A NiCr-based high temperature self lubricating coating PM304 prepared by powder metallurgy[J]. Acta Metallurgica Sinica, 2006(11):1212-1216. [118] 丁春华, 李鹏亮, 周敬恩, 等. 耐高温自润滑材料PM304的磨损性能[J]. 稀有金属材料与工程, 2007(7):1200-1204. DING Chunhua, LI Pengliang, ZHOU jingen, et al. Tribological property of high temperature-resistant self lubricating PM304 composite[J]. Rare Metal Materials and Engineering, 2007(7):1200-1204. [119] 霍波波, 马希直. 波箔气体轴承WC-12Co涂层的制备和性能研究[J]. 润滑与密封, 2018, 43(4):26-33. HUO Bobo, MA Xizhi. Research on the preparation and performances of WC-12CO coatings for gas bump foil bearings[J]. Lubrication Engineering, 2018, 43(4):26-33. [120] HESHMAT H, SHAPIRO W, GRAY S. Development of foil journal bearings for high load capacity and high speed whirl stability[J]. Journal of Tribology, 1982, 104(2):149-156. [121] 龚焕孙, 程诗虎, 张鸿兴, 等. 支承在波形箔带上的弹性圆壳动压气体轴承(Ⅱ)——摩擦功耗试验及其参数分析[J]. 上海机械学院学报, 1982(1):29-44. GONG Huansun, CHENG Shihu, ZHANG Hongxing, et al. Dynamic pressure gas bearing with elastic round shell supported on corrugated foil belt (Ⅱ)——Friction power consumption test and parameter analysis[J]. Journal of Shanghai Institute of Mechanical Engineering, 1982(1):29-44. [122] ROGER K CP, HESHMAT H. Compliant foil bearing structural stiffness analysis-part ii:Experimental investigation[J]. Journal of Tribology, 1993, 115(3):364-369. [123] SALEHI M, HESHMAT H, WALTON J F. Advancements in the structural stiffness and damping of a large compliant foil journal bearing:an experimental study[J]. Journal of Engineering for Gas Turbines and Power, 2004, 129(1):154-161. [124] SIM K, PARK J. Performance measurements of gas bearings with high damping structures of polymer and bump foil via electric motor driving tests and one degree-of-freedom shaker dynamic loading tests[J]. Journal of Engineering for Gas Turbines & Power, 2017, 139(9):092504.1-092504.12. [125] 冯凯, 邓志洪, 赵雪源, 等. 箔片气体轴承静态特性和温度特性实验[J]. 航空动力学报, 2017, 32(6):1394-1399. FENG Kai, DENG Zhihong, ZHAO Xueyuan, et al. Test on static and temperature characteristics of gas foil bearing[J]. Journal of Aerospace Power, 2017, 32(6):1394-1399. [126] 邱烁现, 徐方程. 平箔片凹陷对止推箔片轴承性能影响试验研究[J/OL].机械工程学报:[2022-07-20].http://kns.cnki.net/kcms/detail/11.2187.TH.20220602.1753.016.html. QIU Shuoxian, XU Fangcheng. Experimental study on the effect of top foil sagging on the performanceof thrust foil bearing[J/OL]. Journal of Mechanical Engineering:[2022-07-20].http://kns.cnki.net/kcms/detail/11.2187.TH.20220602.1753.016.html. [127] RUBIO D, ANDRÉS L S. Bump-type foil bearing structural stiffness:Experiments and predictions[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3):653-660. [128] CONLON M J, DADOUCHE A, DMOCHOWSKI W M, et al. A comparison of the steady-state and dynamic performance of first-and second-generation foil bearings[C]//ASME Turbo Expo:Power for Land, Sea, and Air, 2010, 453-462. [129] 徐方程, 刘占生, 马瑞贤, 等. 箔片摩擦对波箔型径向气体轴承静刚度和悬浮转速影响实验[J]. 航空动力学报, 2013, 28(10):2194-2201. XU Fangcheng, LIU Zhansheng, MA Ruixian, et al. Experiment of foil friction effect on static stiffness and lift off speed of bump foil journal bearing[J]. Journal of Aerospace Power, 2013, 28(10):2194-2201. [130] 杨利花, 石建华, 刘恒, 等. 弹性箔片动压径向气体轴承动特性的实验研究[J]. 摩擦学学报, 2006(4):353-357. YANG Lihua, SHI Jianhua, LIU Heng, et al. Experimental study on dynamic performance of compliant aerodynamic foil journal air bearings[J]. Tribology, 2006(4):353-357. [131] ANDRÉS L S, RUBIO D, KIM T H. Rotordynamic performance of a rotor supported on bump type foil gas bearings:experiments and predictions[J]. J. Eng. Gas Turbines Power, 2007, 129(3):850-857. [132] LEE Y B, PARK D J, KIM T H, et al. Development and performance measurement of oil-free turbocharger supported on gas foil bearings[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(3):032506. [133] SIM K, KWON S B, KIM T H, et al. Feasibility study of an oil-free turbocharger supported on gas foil bearings via on-road tests of a two-liter class diesel vehicle[C]//ASME Turbo Expo:Turbine Technical Conference & Exposition, 2013. [134] 徐方程, 刘占生, 马瑞贤, 等. 波箔型径向箔片气体轴承-转子系统升降速动态特性试验[J]. 航空动力学报, 2014, 29(1):216-224. XU Fangcheng, LIU Zhansheng, MA Ruixian, et al. Dynamic performance tests of bump-type gas foil journal bearing-rotor system in start-up and shut-down procedures[J]. Journal of Aerospace Power, 2014, 29(1):216-224. [135] 徐方程, 刘占生, 张雯, 等. 箔片摩擦效应对转子-箔片轴承系统动力学特性影响试验[J]. 航空动力学报, 2014, 29(11):2758-2766. XU Fangcheng, LIU Zhansheng, ZHANG Wen, et al. Experimental of foil friction effects on dynamics characteristic of rotor-foil bearing system[J]. Journal of Aerospace Power, 2014, 29(11):2758-2766. [136] 马斌, 孙皖, 赖天伟, 等. 波箔箔片动压气体轴承的实验研究[J]. 西安交通大学学报, 2014, 48(1):118-122. MA Bin, SUN Wan, LAI Tianwei, et al. Experimental study on gas lubricated hydrodynamic bump type foil bearing[J]. Journal of Xi'an Jiaotong University, 2014, 48(1):118-122. [137] BONELLO P, HASSAN M. An experimental and theoretical analysis of a foil-air bearing rotor system[J]. Journal of Sound Vibration, 2018, 413:395-420. [138] 金文荣, 钱传衢, 陈兰芳. 悬臂型弹性薄片动压气体轴颈轴承的应用研究(Ⅲ)[A]. 中国机械工程学会摩擦学分会. 第五届全国摩擦学学术会议论文集(下册)[C]//中国机械工程学会摩擦学分会:中国机械工程学会摩擦学分会, 1992:4. JIN Wenrong, QIAN Chuanqu, CHEN Lanfang. Research on the application of cantilever type elastic thin sheet dynamic pressure gas journal bearing(Ⅲ)[A]. Tribology Branch Of Chinese Society Of Mechanical Engineering. Proceedings of the fifth national tribology conference (volume 2)[C]//Tribology Branch of China Mechanical Engineering Society:Tribology Branch of China Mechanical Engineering Society, 1992:4. [139] 龚焕孙, 张鸿兴, 周国明. 径向波箔轴承的设计计算和试验研究——(Ⅰ)理论分析[J]. 上海机械学院学报, 1991(4):1-17. GONG Huansun, ZHANG Hongxing, ZHOU Guoming. Design calculation and experimental study of radial wave foil bearing——(Ⅰ) Theoretical analysis[J]. Journal of Shanghai Institute of Mechanical Engineering, 1991(4):1-17. [140] 龚焕孙, 张鸿兴, 张台维, 等. 径向波箔轴承的设计计算和试验研究——(Ⅱ)几何参数计算和实验研究[J]. 上海机械学院学报, 1992(2):39-48. GONG Huansun, ZHANG Hongxing, ZHANG Taiwei, et al. Design calculation and experimental study of radial wave foil bearing——(Ⅱ) Geometric parameter calculation and experimental study[J]. Journal of Shanghai Institute of Mechanical Engineering, 1992(2):39-48. [141] DELLACORTE C, LUKASZEWICZ V, VALCO M, et al. Performance and durability of high temperature foil air bearings for oil-free turbomachinery[J]. Tribology Transactions, 2000, 43(4):774-780. [142] 徐刚, 舒行军, 郑越青, 等. 气体动压箔片径向轴承工程应用试验研究[J]. 轴承, 2017(3):31-35. XU Gang, SHU Xingjun, ZHENG Yueqing, et al. Engineering application experimental investigation of air foil journal bearing[J]. Bearing, 2017(3):31-35. [143] 舒行军, 徐刚, 郑越青, 等. 空气悬浮鼓风机波箔轴承和高速永磁电机的关键技术研究[J]. 风机技术, 2017, 59(2):36-42. SHU Xingjun, XU Gang, ZHENG Yueqing, et al. Key technologies for centrifugal blowers with foil bearings and high speed magnet motor[J]. Chinese Journal of Turbomachinery, 2017, 59(2):36-42. [144] 董炳武, 牛荣军, 徐曼君, 等. 高频轻载自润滑关节轴承加速寿命试验方法[J]. 轴承, 2021(3):21-25. DONG Bingwu, NIU Rongjun, XU Manjun, et al. Test method for accelerated life of high-frequency light-load self-lubricating spherical plain bearings[J]. Bearing, 2021(3):21-25. [145] 黄首清, 代巍, 姚泽民, 等. 两种工程化的航天器用滚动轴承加速寿命试验方法[J]. 航天器环境工程, 2021, 38(4):413-419. HUANG Shouqing, DAI Wei, YAO Zemin, et al. Two engineering methods for accelerated life test of aerospace rolling bearings[J]. Spacecraft Environment Engineering, 2021, 38(4):413-419. |
[1] | 李昊, 宾洋, 胡杰, 岳肖, 金庭安, 张凯. 无偏显式模型预测控制及其在质子交换膜燃料电池净输出功率跟踪中的应用[J]. 机械工程学报, 2024, 60(14): 282-297. |
[2] | 柯育智, 袁伟, 张少鹏, 周飞鲲, 鲁亮, 汤勇. 燃料电池质子交换膜表面微结构热压工艺热力耦合特性研究[J]. 机械工程学报, 2024, 60(14): 317-328. |
[3] | 魏小栋, 孙超, 刘波, 霍为炜, 任强, 孙逢春. 燃料电池汽车车速与能量联合优化[J]. 机械工程学报, 2023, 59(8): 204-212. |
[4] | 高锋阳, 张浩然. 氢燃料电池混合动力有轨电车的自适应瞬时等效能耗优化[J]. 机械工程学报, 2023, 59(6): 226-238. |
[5] | 王九龙, 吴晓刚. 燃料电池汽车用宽升降压范围准Z源DC-DC变换器[J]. 机械工程学报, 2023, 59(16): 325-341. |
[6] | 赵安新, 张智晟. 考虑电-气综合需求响应的综合能源系统低碳经济调度*[J]. 电气工程学报, 2022, 17(4): 226-232. |
[7] | 张礼斌, 刘帅, 王忠, 李瑞娜, 张启霞. 燃料电池新型流道对气体扩散层表面水去除的影响[J]. 机械工程学报, 2022, 58(22): 79-89. |
[8] | 刘青山, 兰凤崇, 陈吉清, 曾常菁, 王俊峰. 多孔层的孔隙特性和各向异性对燃料电池瞬态性能的影响[J]. 机械工程学报, 2022, 58(22): 90-105. |
[9] | 孙誉宁, 毛磊, 黄伟国, 章恒, 陆守香. 基于磁场的质子交换膜燃料电池故障诊断方法[J]. 机械工程学报, 2022, 58(22): 106-114. |
[10] | 张福林, 何建国, 刘洋, 代守军, 谢玉莹, 黄超, 凡炼文, 刘思思. 树脂/石墨复合材料激光烧蚀与累积效应研究[J]. 机械工程学报, 2022, 58(15): 302-312. |
[11] | 张晗, 杨继斌, 张继业, 徐晓惠. 燃料电池有轨电车能量管理与速度曲线协同优化[J]. 机械工程学报, 2022, 58(10): 169-179. |
[12] | 林开杰, 董伟菘, 顾冬冬, 全景峰, 乔竞驰, 王超超. 选区激光熔化工艺参数对燃料电池316L不锈钢双极板性能的影响[J]. 机械工程学报, 2021, 57(9): 167-174. |
[13] | 周伟, 朱鑫宁, 连云崧, 游昌堂. 质子交换膜燃料电池的三维流场技术研究进展[J]. 机械工程学报, 2021, 57(8): 2-12. |
[14] | 刘雨农, 徐展, 倪中华, 魏蔚, 严岩. 车载深冷高压储供氢过程预测和影响因素研究[J]. 机械工程学报, 2021, 57(6): 52-59. |
[15] | 马雨辉, 皇甫宜耿, 徐良材, 许佳妮. 一种基于开关电容倍压单元的新型浮地并联高增益变换器*[J]. 电气工程学报, 2021, 16(2): 181-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||