• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (21): 114-125.doi: 10.3901/JME.2022.21.114

• 机械动力学 • 上一篇    下一篇

扫码分享

基于双尺度柔性原型迁移网络的空间滚动轴承寿命阶段识别

王腾1, 李锋1, 罗玲2, 汤宝平3   

  1. 1. 四川大学机械工程学院 成都 610065;
    2. 中国测试技术研究院 成都 610021;
    3. 重庆大学机械传动国家重点实验室 重庆 400044
  • 收稿日期:2021-12-20 修回日期:2022-07-25 出版日期:2022-11-05 发布日期:2022-12-23
  • 作者简介:王腾,男,1995年出生。主要研究方向为机械设备故障诊断、人工智能。E-mail:980796181@qq.com;罗玲,女,1988年出生,硕士,助理研究员。主要研究方向为电学测试技术、机械设备故障诊断。E-mail:1736533905@163.com;汤宝平,男,1971年出生,博士,教授,博士研究生导师。主要研究方向为设备状态监测与故障诊断、虚拟仪器、无线传感器网络。E-mail:bptang@cqu.edu.cn
  • 基金资助:
    重庆大学机械传动国家重点实验室开放基金(SKLMT-KFKT-201718)、中国博士后科学基金(2016M602685)和四川省中国制造2025四川行动资金计划(2019CDYB-12)资助项目。

Life State Recognition of Space Rolling Bearings Based on Dual Scale Flexible Prototype Transfer Network

WANG Teng1, LI Feng1, LUO Ling2, TANG Baoping3   

  1. 1. School of Mechanical Engineering, Sichuan University, Chengdu 610065;
    2. National Institute of Measurement and Testing Technology, Chengdu 610021;
    3. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044
  • Received:2021-12-20 Revised:2022-07-25 Online:2022-11-05 Published:2022-12-23

摘要: 针对变工况条件下样本分布差异较大、不同寿命阶段样本数量不均衡导致现有空间滚动轴承寿命阶段识别方法的寿命阶段识别精度较低问题,提出基于双尺度柔性原型迁移网络(Dual scale flexible prototype transfer network,DSFPTN)的空间滚动轴承寿命阶段识别方法。在所提出的DSFPTN中,构造双尺度柔性域感知模块并将其嵌入特征提取器来增强特征提取器对不同领域私有特征的探索能力,提高特征提取器对空间滚动轴承源域和目标域样本特征的学习能力;设计同域泛原型学习以防止跨域样本不加区分的特征学习和不正确聚类,增加两域异类样本的区分性;构建两域原型迁移机制来获得域不变原型,实现从源域原型到目标域原型的迁移;利用加载域不变原型后的双分类器对齐两域之间的分布并计算目标域待测样本与域不变原型之间相似度完成对空间滚动轴承目标域待测样本分类,该分类方式在不同寿命阶段样本数量不均衡条件下能提高对各寿命阶段样本的识别精度。地面模拟空间环境下空间滚动轴承寿命阶段识别实例验证所提出的基于DSFPTN的寿命阶段识别方法的有效性。总之,构建双尺度柔性域感知模块、同域泛原型、两域原型迁移机制和加载域不变原型的双分类器使得DSFPTN在样本分布差异较大以及不同寿命阶段样本数量不均衡条件下,仅利用空间滚动轴承源域的非均衡有标签样本就能对目标域待测样本进行较高精度的寿命阶段识别。

关键词: 空间滚动轴承, 寿命阶段识别, 双尺度柔性域感知模块, 同域泛原型学习, 两域原型迁移, 双分类器

Abstract: Aiming at the problem that the life state recognition accuracy of the existing life state recognition methods of space rolling bearings is low due to the large difference of sample distribution and the unbalanced number of samples in different life states under variable working conditions, a novel life state recognition method of space rolling bearings based on dual scale flexible prototype transfer network (DSFPTN) is proposed. In the proposed DSFPTN, a dual scale flexible domain sensing module is constructed and embedded in feature extractor to enhance the feature extractor to explore private features in different domains, thus improving the feature extractor to learn sample features in source and target domains of space rolling bearings; moreover, the same-domain imprecise prototype learning is designed to prevent the indiscriminate feature learning and incorrect clustering of cross domain samples, thus increasing the discrimination of heterogeneous samples in two domains; additionally, the two-domain prototype transfer mechanism is built to obtain the domain-invariant prototype and realize the transfer from source domain prototype to target domain prototype; finally, the dual classifiers after loading the domain-invariant prototype are used to align the distribution between two domains, and calculate the similarity between testing samples in target domain and domain-invariant prototype to complete the classification of testing samples in target domain of space rolling bearings, which can improve the recognition accuracy of various life state samples when the number of samples in different life states is unbalanced. The instances of life state recognition of space rolling bearings in space environment simulated on the ground verify the effectiveness of the proposed life state recognition method based on DSFPTN. To sum up, the constructions of the dual scale flexible domain sensing module, the same domain imprecise prototype, the two-domain prototype transfer mechanism, and the dual classifiers loaded with domain-invariant prototype make DSFPTN use only the unbalanced labeled samples in source domain of space rolling bearings to recognize the life states of testing samples in target domain with high accuracy under the large difference in sample distribution and the unbalanced number of samples in different life states.

Key words: space rolling bearings, life state recognition, dual scale flexible domain sensing module, same-domain imprecise prototype learning, two-domain prototype transfer, dual classifiers

中图分类号: