• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (20): 438-452.doi: 10.3901/JME.2022.20.438

• 交叉与前沿 • 上一篇    下一篇

扫码分享

超高压斜盘式轴向柱塞泵柱塞副摩擦界面油膜固液耦合作用特性研究

胡敏1,2, 高鹏1, 闵思婕3, 刘睿1, 丘天祥1, 曾亿山1, 刘常海1,2   

  1. 1. 合肥工业大学机械工程学院 合肥 230009;
    2. 浙江大学流体动力与机电系统国家重点实验室 杭州 310027;
    3. 安徽博一流体传动股份有限公司 合肥 230009
  • 收稿日期:2022-03-03 修回日期:2022-07-20 出版日期:2022-10-20 发布日期:2022-12-27
  • 通讯作者: 刘常海(通信作者),男,1988年出生,博士,讲师。主要研究方向为流体传动与控制。E-mail:liuchanghai@hfut.edu.cn
  • 作者简介:胡敏,男,1985年出生,博士,讲师。主要研究方向为流体动力元件与系统。E-mail:minhu@hfut.edu.cn;高鹏,男,1996年出生,硕士研究生。主要研究方向为轴向柱塞泵与马达。E-mail:2020170150@mail.hfut.edu.cn
  • 基金资助:
    国家自然科学基金(51905139,52075139,52005144)、流体动力与机电系统国家重点实验室开放基金课题(GZKF-201812,GZKF-202015)和中央高校基本科研业务费专项资金(JD2020JGPY0007)资助项目。

Study on the Solid-liquid Interaction Characteristics of the Oil Film within Piston Cylinder Pair of the Ultra-high Pressure Swash Plate Type Axial Piston Pump

HU Min1,2, GAO Peng1, MIN Sijie3, LIU Rui1, QIU Tianxiang1, ZENG Yishan1, LIU Changhai1,2   

  1. 1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009;
    2. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027;
    3. Anhui Boyi Fluid Power Transmission Joint Stock Co., Ltd., Hefei 230009
  • Received:2022-03-03 Revised:2022-07-20 Online:2022-10-20 Published:2022-12-27

摘要: 作为液压传动系统核心动力元件的轴向柱塞泵,超高压化是其必然发展趋势与要求,然而超高压化会造成其中关键的柱塞副摩擦界面油膜形成显著的固液耦合作用,对柱塞副油膜的摩擦润滑与密封承载性能产生规律尚不明确的影响。为此,建立一种基于变形矩阵法的固液耦合作用求解方法,该方法基于有限容积法解算油膜流体润滑方程,基于有限元法实现摩擦界面变形计算节点规则化设置及变形矩阵精准计算,在此基础上建立柱塞副油膜弹性流体动压润滑数值计算模型,针对采用软硬配对的柱塞副63 MPa超高压工况下的摩擦界面油膜固液耦合作用特性进行研究,结果表明:固液耦合作用有助于减小柱塞副处轴向黏性摩擦力和泄漏流量,一个周期内柱塞副总周向黏性摩擦力大小基本不变但分布更为集中,导致产生了更大峰值的瞬时摩擦力;显著的结构变形产生于柱塞副摩擦界面两端局部位置处,因而对泄漏流量不造成影响,在超高压工况下经过软硬配对跑合,固液耦合作用有助于原本标准柱形铜套孔形成类似“喇叭口”的一种微观形貌,增大了柱塞与铜套孔的接触面积,增强了密封超高压油的能力,降低了接触应力。建立的模型及研究结果可为轴向柱塞泵超高压化设计提供指导。

关键词: 轴向柱塞泵, 柱塞副, 超高压, 固液耦合作用, 弹性流体动压润滑

Abstract: The axial piston pump, as the core power element of the hydraulic transmission system, higher nominal pressure is its inevitable development trend and requirement. However, ultra-high pressure will cause the oil film of the key piston cylinder pair friction interface to form a significant solid-liquid coupling effect. The effect of the significant solid-liquid coupling on the friction, lubrication and sealing, and load-bearing performance of the piston cylinder pair oil film is still unclear. To this end, a solid-liquid coupling solution method based on the deformation matrix method is developed. The method is built on the finite volume method to solve the oil film fluid lubrication equation, and the finite element method used to realize the regularization of the deformation calculation nodes on the friction interface and the accurate calculation of the deformation matrixes. On this basis, a numerical calculation model of the elastic hydrodynamic lubrication of the piston cylinder pair oil film is established. Numerical analysis and experimental research are carried out on the solid-liquid coupling action characteristics of the friction interface of the soft-hard paired piston cylinder pair, under the 63 MPa ultra-high pressure working condition. The results show that: With the solid-liquid coupling effect, the axial viscous friction and leakage flow of piston cylinder pair are slightly reduced, the total circumferential viscous friction is basically unchanged but the distribution of the force is more concentrated, causing a greater peak friction; Significant structural deformation is concentrated in the local area near the two ends of the oil film distribution area, which is found that it does not induce the increase of the leakage flow. Under the ultra-high pressure conditions, with the solid-liquid coupling effect, the original standard cylindrical bushing bore formed a “flared” microscopic appearance after running of the piston cylinder pair, which helps to enlarge the contact surface between the piston and the bushing bore, enhance the ability to seal ultra-high pressure oil, and reduce contact stress. The established model and research results can provide guidance for the design of the ultra-high pressure axial piston pump.

Key words: axial piston pump, piston/cylinder pair, ultra-high pressure, fluid structure interaction, elastic hydrodynamic lubrication(EHD)

中图分类号: