• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (16): 58-67.doi: 10.3901/JME.2022.16.058

• 特邀专栏: 高性能塑性成形制造(上) • 上一篇    下一篇

扫码分享

铝锂合金电磁形变复合热处理工艺研究

徐佳辉1,2, 黄亮1,2, 谢冰鑫1,2, 李建军1,2   

  1. 1. 华中科技大学材料科学与工程学院 武汉 430074;
    2. 华中科技大学材料成形与模具技术国家重点实验室 武汉 430074
  • 收稿日期:2021-11-30 修回日期:2022-04-15 出版日期:2022-08-20 发布日期:2022-11-03
  • 通讯作者: 黄亮(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为高强韧金属材料及其特殊能场作用下大型高性能金属构件热成形理论和技术。E-mail:huangliang@hust.edu.cn
  • 作者简介:徐佳辉,男,1996年出生,博士研究生。主要研究方向为铝锂合金电磁形变复合热处理。E-mail:xujiahui@hust.edu.cn
  • 基金资助:
    国家自然科学基金(51975229)、武汉市应用基础前沿(2020010601012178)和湖北省重点研发计划(2020BAB139)资助项目

Study on Electromagnetic Deformation Combined with Heat Treatment Process of Al-Li Alloy

XU Jiahui1,2, HUANG Liang1,2, XIE Bingxin1,2, LI Jianjun1,2   

  1. 1. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074;
    2. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2021-11-30 Revised:2022-04-15 Online:2022-08-20 Published:2022-11-03

摘要: 为解决高性能铝锂合金构件的成形难题,提出了电磁形变复合热处理(Electromagnetic deformation combined with heat treatment, ET)工艺,研究了ET工艺下2195铝锂合金的力学性能优势及微观组织演变机理。ET工艺流程为:固溶淬火-电磁形变-人工时效。相比于传统形变热处理(Traditional thermomechanical heat treatment, TMT),ET工艺的形变方式为具有成形极限高、贴模性佳以及表面质量优等优势的电磁形变。研究发现,ET试样的力学性能优势在于屈强比低、加工硬化能力强。ET试样的抗拉强度达到612.3 MPa±2.4 MPa,伸长率达到11.7%±0.2%,屈强比为86.9%。相比于TMT试样,ET试样的屈强比降低了7%,即ET工艺得到的构件服役过程发生屈服后仍有更多的应力增加余量才达到失效状态,有利于构件的可靠服役。此外,在塑性变形阶段,ET试样的应变硬化率更高,为TMT试样的两倍,表明ET试样的加工硬化能力更好。通过织构及斯密特因子分析,揭示了ET试样加工硬化能力更高的机理。研究发现,ET试样的(110)//RD织构体积分数更高,且斯密特因子更小,表明ET试样在塑性变形过程中的后续变形程度更大且变形抗力更大。通过断口分析,发现TMT和ET试样都呈现出晶间断裂和穿晶断裂共存的混合型断口,存在局部韧窝形貌;ET试样的断口形貌中韧窝所占面积较大,与ET试样塑性较高的结果相吻合。

关键词: 电磁形变复合热处理, 2195铝锂合金, 加工硬化能力, 织构, 斯密特因子

Abstract: In order to solve the forming problem of high-performance Al-Li alloy parts, an electromagnetic deformation combined with heat treatment (ET) is proposed, and the microstructure behavior and mechanical properties advantages of 2195 Al-Li alloy under ET are studied. The process of ET is solution treatment and quenching, followed by electromagnetic deformation, and then artificial aging. Compared with traditional thermomechanical heat treatment (TMT). ET is different in that its pre-deformation method is electromagnetic deformation with the advantages of high forming limit, low die-fitting gap, and excellent surface quality. It is found that the mechanical properties of the ET specimens have the advantages of low yield strength ratio and strong work hardening ability. The ultimate tensile strength, the elongation, and the yield strength ratio of the ET specimen reach 612.3 MPa±2.4 MPa, 11.7%±0.2%, and 86.9%, respectively. The yield strength ratio of the ET specimen is 7% lower than that of the TMT specimen. After the ET component is yielded, it is more stress increase margin to reach the failure stare, which is conducive to the reliable service of the parts. In addition, in the plastic deformation stage, the strain hardening rate of the ET specimen is higher, which is twice of the TMT specimen, indicating that the work hardening ability of the ET specimen is higher. Besides, through texture and Schmid factor analysis, the mechanism of higher work hardening ability of ET specimen is revealed. The (110)//RD texture volume fraction of ET specimen is higher and the Schmid factor is lower, indicating that the subsequent deformation of the ET specimen is greater and the deformation resistance is greater during the plastic deformation process. Through fracture analysis, it is found that both TMT and ET specimens show intergranular fractures and transgranular fractures, and there are local dimple morphologies. The fracture morphology of ET specimens shows a larger area of dimples, which is consistent with the results of the higher plasticity of the ET specimen.

Key words: electromagnetic deformation combined with heat treatment, 2195 Al-Li alloy, work hardening ability, texture, Schmid factor

中图分类号: