[1] XU Jinjun, JIANG Mang, XIONG Chun. Research progress of Al-Li alloys and its forming technology for aeronautic and astronautic industry[J]. Hot Working Technology, 2019, 48(24): 11-16. 徐进军, 江茫, 熊纯. 铝锂合金及其在航空航天领域成形技术的研究进展[J]. 热加工工艺, 2019, 48(24): 11-16. [2] WANG Y, ZHAO G. Hot extrusion processing of Al–Li alloy profiles and related issues: A review[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 64. [3] EL-ATY A A, XU Y, GUO X, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review[J]. J. Adv. Res., 2018, 10: 49-67. [4] LI Jianjun, XU Jiahui, HUANG Liang, et al. Research progress of thermomechanical treatment process for Al-Li alloy[J]. Forging & Stamping Technology, 2021, 46(11): 1-10. 李建军, 徐佳辉, 黄亮, 等. 铝锂合金形变热处理工艺研究进展[J]. 锻压技术, 2021, 46(11): 1-10. [5] ZHANG Xing. General development of high strength structural steel with low yield-tensile strength ratio[J]. Wide and Heavy Plate, 2018, 24(4): 35-38. 张兴. 低屈强比高强度结构钢的发展概况[J]. 宽厚板, 2018, 24(4): 35-38. [6] TAYON W A, NYGREN K E, CROOKS R E, et al. In-situ study of planar slip in a commercial aluminum-lithium alloy using high energy X-ray diffraction microscopy[J]. Acta Materialia, 2019, 173: 231-241. [7] FENG Zhaohui, YU Juan, HAO Min, et al. Research progress and development trend of aluminum-lithium alloys[J]. Journal of Aeronautical Materials, 2020, 40(1): 1-11. 冯朝晖, 于娟, 郝敏, 等. 铝锂合金研究进展及发展趋势[J]. 航空材料学报, 2020, 40(1): 1-11. [8] XIAO W, HUANG L, LI J, et al. Investigation of springback during electromagnetic-assisted bending of aluminium alloy sheet[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-4): 375-394. [9] LIU X L, HUANG L, LI J J, et al. An Electromagnetic incremental forming (EMIF) strategy for large-scale parts of aluminum alloy based on dual coil[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1-4): 411-431. [10] HUANG Liang, LUO Wenyong, LIU Xianlong, et al. Research on plastic flow behaviors for hole flanging part of aluminum alloy with large complicated profiles by electromagnetic forming[J]. Journal of Mechanical Engineering, 2013, 49(24): 24-38. 黄亮, 骆文勇, 刘贤龙, 等. 大型复杂型面铝合金翻边件电磁成形塑性流动行为研究[J]. 机械工程学报, 2013, 49(24): 24-38. [11] CUI X H, MO J H, LI J J, et al. Electromagnetic incremental forming (EMIF): A novel aluminum alloy sheet and tube forming technology[J]. Journal of Materials Processing Technology, 2014, 214(2): 409-427. [12] XU J R, XIE X Y, WEN Z S, et al. Deformation behaviour of az31 magnesium alloy sheet hybrid actuating with al driver sheet and temperature in magnetic pulse forming[J]. Journal of Manufacturing Processes, 2019, 37: 402-412. [13] GONG C P, FAN Z S, CHENG L, et al. Predictions of the total electromagnetic repulsion force in electromagnetic riveting process: Numerical analysis model and experiments[J]. Journal of Manufacturing Processes, 2021, 69: 656-670. [14] YU Haiping, LI Chunfeng, LI Zhong. Numerical simulation of coupled field of electromagnetic forming for tube-compression based on FEM[J]. Journal of Mechanical Engineering, 2006, 42(7): 231-234. 于海平, 李春峰, 李忠. 基于FEM的电磁缩径耦合场数值模拟[J]. 机械工程学报, 2006, 42(7): 231-234. [15] ZHAO Zhiheng, LI Chunfeng, LI Jianhui, et al. Magnetic field characteristic and magnetic pressure distribution in tube electromagnetic expansion[J]. Journal of Mechanical Engineering, 2005, 41(4): 185-188. 赵志衡, 李春峰, 李建辉, 等. 管坯电磁胀形磁场特性及磁压力分布[J]. 机械工程学报, 2005, 41(4): 185-188. [16] MENG Zhenghua, HUANG Shangyu, HU Jianhua, et al. Experimental research on warm and electromagnetic hybrid forming of magnesium alloy sheet[J]. Journal of Mechanical Engineering, 2011, 47(10): 38-42. 孟正华, 黄尚宇, 胡建华, 等. 镁合金板材温热电磁复合成形试验研究[J]. 机械工程学报, 2011, 47(10): 38-42. [17] LI J J, LI L, WAN M, et al. Innovation applications of electromagnetic forming and its fundamental problems[J]. Procedia Manufacturing, 2018, 15: 14-30. [18] DENG H K, MAO Y F, LI G Y, et al. A study of electromagnetic free forming in AA5052 using digital image correlation method and FE analysis [J]. Journal of Manufacturing Processes, 2019, 37: 595-605. [19] SU H L, HUANG L, LI J J, et al. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings[J]. Journal of Materials Science & Technology, 2021, 70: 125-135. [20] LI J J, QIU W, HUANG L, et al. Gradient electromagnetic forming (GEMF): A new forming approach for variable-diameter tubes by use of sectional coil[J]. International Journal of Machine Tools & Manufacture, 2018, 135: 65-77. [21] XU J H, HUANG L, HONG X D, et al. Research on the electromagnetic blanking based on force-free region deformation: Simulation and experiments[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5-6): 1751-1766. [22] ZHANG Q X, HUANG L, LI J J, et al. Investigation of dynamic deformation behaviour of large-size sheet metal parts under local lorentz force[J]. Journal of Materials Processing Technology, 2019, 265: 20-33. [23] ZHU H, HUANG L, LI J J, et al. Strengthening mechanism in laser-welded 2219 aluminium alloy under the cooperative effects of aging treatment and pulsed electromagnetic loadings[J]. Materials Science and Engineering: A, 2018, 714: 124-139. [24] XU J J, DENG Y L, CHEN J Q, et al. Effect of ageing treatments on the precipitation behavior and mechanical properties of Al-Cu-Li alloys[J]. Materials Science and Engineering: A, 2020, 773: 138885. [25] WANG Y, MA X, XI H, et al. Effects of pre-stretching and aging treatments on microstructure, mechanical properties, and corrosion behavior of spray-formed Al-Li alloy 2195[J]. Journal of Materials Engineering and Performance, 2020, 29(10): 6960-6973. [26] RODGERS B I, PRANGNELL P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195[J]. Acta Materialia, 2016, 108: 55-67. [27] SUN J W, WU G H, ZHANG L, et al. Microstructure characteristics of an ultra-high strength extruded Al-4.7Cu-1Li-0.5Mg-0.1Zr-1Zn alloy during heat treatment[J]. Journal of Alloys and Compounds, 2020, 813: 152216. [28] WEI X, JIN L, WANG F, et al. High Strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates[J]. Journal of Materials Science & Technology, 2020, 44: 19-23. [29] GUMBMANN E, DE GEUSER F, SIGLI C, et al. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy[J]. Acta Materialia, 2017, 133: 172-185. [30] XIE Bingxin, HUANG Liang, XU Jiahui. Aging precipitation behavior and strengthening mechanism of 2195 Al-Li alloy[J/OL]. [2021-11-18]. The Chinese Journal of Nonferrous Metals, http://ysxb.csu.edu.cn/paper/onlinepaperview.aspx?id=paper_777763. 谢冰鑫, 黄亮, 徐佳辉, 等. 2195铝锂合金时效析出行为与强化机理[J/OL]. [2021-11-18]. 中国有色金属学报, http://ysxb.csu.edu.cn/paper/onlinepaperview.aspx?id=paper_777763. [31] XIE B X, HUANG L, XU J H, et al. Effect of the aging process and pre-deformation on the precipitated phase and mechanical properties of 2195 Al–Li alloy[J]. Materials Science and Engineering: A, 2022, 832: 142394. [32] WANG X M, SHAO W Z, JIANG J T, et al. Quantitative analysis of the influences of pre-treatments on the microstructure evolution and mechanical properties during artificial ageing of an Al-Cu-Li-Mg-Ag alloy[J]. Materials Science and Engineering: A, 2020, 782: 139253. [33] YAN S L, YANG H, LI H W, et al. A unified model for coupling constitutive behavior and micro-defects evolution of aluminum alloys under high-strain-rate deformation[J]. International Journal of Plasticity, 2016, 85: 203-229. [34] XU Jiahui, HUANG Liang, XU Yike, et al. Research on the thermomechanical treatment of 2195 Al-Li alloy based with pulsed electromagnetic field treatment) [J/OL]. [2021-10-13]. The Chinese Journal of Nonferrous Metals, http://ysxb.csu.edu.cn/paper/onlinepaperview.aspx?id=paper_777529. 徐佳辉, 黄亮, 徐毅珂, 等. 基于脉冲电磁场作用的2195铝锂合金形变热处理研究[J/OL]. [2021-10-13]. 中国有色金属学报, http://ysxb.csu.edu.cn/paper/onlinepaperview.aspx?id=paper_777529. [35] SU H L, HUANG L, LI J J, et al. Two-step electromagnetic forming: a new forming approach to local features of large-size sheet metal parts[J]. International Journal of Machine Tools & Manufacture, 2018, 124: 99-116. [36] ZHU H, HUANG L, WANG Z Y, et al. Fracture behaviour of laser-welded 2219-T6 aluminium alloy under pulsed lorentz force[J]. Journal of Materials Science, 2019, 54(13): 9857-9874. [37] CUI Xiaohui, MO Jianhua, WANG Bo, et al. Loose coupling simulation for electromagnetic sheet forming: 3d finite element method[J]. Journal of Mechanical Engineering, 2011, 47(16): 45-51. 崔晓辉, 莫健华, 王波, 等. 基于松散耦合法的电磁平板成形3D限元仿真[J]. 机械工程学报, 2011, 47(16): 45-51. [38] SU H L, HUANG L, LI J J, et al. Inhomogeneous deformation behaviors of oblique hole-flanging parts during electromagnetic forming[J]. Journal of Manufacturing Processes, 2020, 52: 1-11. [39] CHU Hongyan, FEI Renyuan, LU Xin, et al. Relation of sheet metal thickness and deforming depth in electromagnetic forming[J]. Journal of Mechanical Engineering, 2003, 39(3): 62-65. 初红艳, 费仁元, 陆辛, 等. 电磁成形中板料厚度与变形深度的关系[J]. 机械工程学报, 2003, 39(3): 62-65. [40] LI Z, WANG Y C, CHENG X W, et al. Compressive behavior of a Fe-Mn-Al-C lightweight steel at different strain rates[J]. Materials Science and Engineering: A, 2020, 772: 138700. [41] ZHANG Chaohua, WANG Xiaoxia, CHANG Maochun, et al. Effects of yield strength of weld metal and material strain hardening on prediction accuracy of welding residual stress and deformation in a Q345 steel joint[J]. Journal of Mechanical Engineering, 2021, 57(10): 160-168. 张超华, 王晓霞, 常茂椿, 等. 焊缝金属的屈服强度和材料的加工硬化对Q345钢焊接残余应力与变形计算精度的影响[J]. 机械工程学报, 2021, 57(10): 160-168. [42] BO G W, WANG G, JIANG F L, et al. Dynamic softening and microstructural evolution during hot deformation of Al-Cu-Mg-Zr alloys with different homogenization cooling rates[J]. Rare Metals, 2020, 40(3): 626-634. [43] LIU Y, LU C, WANG H, et al. Microstructure evolution, lattice rotation retardation and grain orientation fragmentation in commercial purity aluminium deformed by high pressure torsion[J]. Journal of Materials Research and Technology, 2020, 9(3): 6642-6654. [44] TIAMIYU A A, ODESHI A G, SZPUNAR J A. Crash-worthiness of a recently-developed AA 2624 aluminum alloy: Experimental studies[J]. Materials Science and Engineering: A, 2019, 766: 138389. [45] XU J H, HUANG L, XIE B X, et al. Microstructure evolution and mechanical properties of as-annealed and solution treated Al-Cu-Li alloy 2195 under dynamic compression[J]. Journal of Materials Processing Technology, 2022, 303: 117516. [46] YU H P, JIN Y Y, HU L H, et al. Mechanical properties of the solution treated and quenched Al–Cu–Li alloy (AA2195) sheet during high strain rate deformation at room temperature[J]. Materials Science and Engineering: A, 2020, 793: 139880. [47] GODET S, JIANG L, LUO A, et al. Use of schmid factors to select extension twin variants in extruded magnesium alloy tubes[J]. Scripta Materialia. 2006, 55(11): 1055-1058. [48] LI Hongying, WANG Xiaoyu, YU Weichen. Effect of aging treatment on microstructures and properties of 2050 aluminum lithium alloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(12): 2433-2440. 李红英, 王小雨, 余玮琛. 时效制度对2050铝锂合金微观组织和力学性能的影响[J]. 中国有色金属学报, 2018, 28(12): 2433-2440. [49] ZHANG C S, LIU M F, MENG Z J, et al. Microstructure evolution and precipitation characteristics of spray-formed and subsequently extruded 2195 Al-Li alloy plate during solution and aging process[J]. Journal of Materials Processing Technology, 2020, 283: 116718. [50] WEN Peigang, LI Guoai, LU Zheng, et al. Effect of aging treatment on fracture behavior of Ai-Li alloy[J]. Failure Analysis and Prevention, 2016, 11(3): 139-142. 温培刚, 李国爱, 陆政, 等. 时效处理对铝锂合金断裂行为的影响[J]. 失效分析与预防, 2016, 11(3): 139-142. |