机械工程学报 ›› 2022, Vol. 58 ›› Issue (1): 124-144.doi: 10.3901/JME.2022.01.124
王志远1,2, 邢志国2, 王海斗2,3, 单徳彬1
收稿日期:
2021-06-26
修回日期:
2021-11-18
出版日期:
2022-01-05
发布日期:
2022-03-19
通讯作者:
邢志国(通信作者),男,1979年出生,博士,助理研究员,博士研究生导师。主要研究方向为表面工程与摩擦学。E-mail:xingzg2011@163.com
作者简介:
王志远,男,1994年出生,博士研究生。主要研究方向为表面工程与摩擦学。E-mail:reincarnational@163.com
基金资助:
WANG Zhiyuan1,2, XING Zhiguo2, WANG Haidou2,3, DAN Debin1
Received:
2021-06-26
Revised:
2021-11-18
Online:
2022-01-05
Published:
2022-03-19
摘要: 液滴的润湿现象广泛存在于自然界和工程应用中,液滴的表面润湿行为在机械加工领域有很多的应用,已成为国内外表界面科学研究的热点问题。针对液滴在固体表面上的铺展、黏着和弹跳现象进行深入分析,从液滴碰撞表面的动态参数以及表面织构参数两个变量进行总结,分析了液滴在固体表面的润湿行为。详述了液滴的润湿理论模型,给出静态接触角与动态接触角数学模型的发展及最新流体润湿理论研究现状。最后,综述了关于表面润湿的CFD模拟技术发展以及主流软件的使用情况,并对不同表面织构参数进行的流体数值模拟过程进行总结。从理论模型创建与数值模拟应用两大方面出发,对现有的液滴在织构化表面上润湿行为的研究情况进行梳理和分析,进一步指出当前所存在的问题以及将来的发展趋势。
中图分类号:
王志远, 邢志国, 王海斗, 单徳彬. 液滴在固体织构化表面上的润湿行为研究现状[J]. 机械工程学报, 2022, 58(1): 124-144.
WANG Zhiyuan, XING Zhiguo, WANG Haidou, DAN Debin. Research Progress of Droplet Wetting Behavior on Solid Textured Surface[J]. Journal of Mechanical Engineering, 2022, 58(1): 124-144.
[1] ZHANG Yiran,LUO Kaihong. Regimes of head-on collisions of equal-sized binary droplets[J]. Langmuir,2019,35(27):8896-8902. [2] MCKNIGHT D,THURMAN E M,WERSHAW R L,et al. Biogeochemistry of aquatic hncord,massachusetts[J]. Ecology,1985,66(4):1339. [3] ZHANG Chenqi,BEARD C E,ADLER P H,et al. Effect of curvature on wetting and dewetting of proboscises of butterflies and moths[J]. Royal Society Open Science,2018,5(1):171241. [4] ZHAO Danyang,HUANG Zhiping,WANG Minjie,et al. Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications[J]. Journal of Materials Processing Technology,2012,212(1):198-202. [5] BRUTIN D,STAROV V. Recent advances in droplet wetting and evaporation[J]. Chemical Society Reviews,2018,47:558-585. [6] TRETINNIKOV O N,IKADA Y. Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified wilhelmy balance method[J]. Langmuir,1994,10:1606-1614. [7] OBERLI L,CARUSO D,HALL C,et al. Condensation and freezing of droplets on superhydrophobic surfaces[J]. Advances in Colloid and Interface Science,2014,210:47-57. [8] LEE M,LEE D,PARK B J. Effect of interaction heterogeneity on colloidal arrangements at a curved oil-water interface[J]. Soft Matter,2014,11(2):318-323. [9] LYAKHOVICH A M,SHAKOV A A,LYALINA N V. Effect of ambient humidity to wetting angles of various hydrophilic surfaces[J]. Protection of Metals & Physical Chemistry of Surfaces,46(5):534-539. [10] 吉爱红,姚宁,董本正,等. 树蛙在不同坡度上的运动行为与运动力学[C]//全国固体力学学术大会. 成都. 2014. JI Aihong,YAO Ning,DONG Benzheng,et al. Motion behavior and motion mechanics of tree frogs on different slopes[C]//National Solid Mechanics Academic Conference. Chengdu. 2014. [11] MORRA M,OCCHIELLO E,GARBASSI F. The wetting behavior of grafted hydrophilic acrylic monomers[J]. Colloid & Polymer Science,1993,271(7):696-704. [12] DAI Qianwen,WEI Huang,WANG Xiaolei. A surface texture design to obstruct the liquid migration induced by omnidirectional thermal gradients[J]. langmuir the ACS Journal of Surfaces & Colloids,2015,28(8):1-22. [13] TAN Na,XING Zhiguo,WANG Xiaoli,et al. Effects of texturing patterns on the adhesion strength of atmosphere plasma sprayed coatings[J]. Journal of Materials Research,2017,32(9):1682-1692. [14] KULINICH S A,FARZANEH M. Alkylsilane self-assembled monolayers:Modeling their wetting characteristics[J]. Applied Surface Science,230(1-4):232-240. [15] AGNIESZKA T,NIKOLAJ K M,TAO Li. Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assembly[J]. Nanoscale,2018,10(44):20652-20663. [16] 张晓亮. 微/纳尺度织构化表面的粘着和摩擦学行为研究[D]. 合肥:中国科学院大学,2013. ZHANG Xiaoliang. Study on adhesion and tribological behavior of micro/nano-scale textured surface[D]. Hefei:University of Chinese Academy of Sciences,2013. [17] ZHONG Yiwei,GAO Jintao,GUO Zhancheng. A model for solid surface viscosity of iron powders at high temperature:Influence of particle size distribution[J]. Powder Technology,2018(5):5910-18 [18] 李健. 附着固体颗粒的粗糙表面润湿特性研究[D]. 合肥:合肥工业大学,2017. LI Jian. Research on wetting characteristics of rough surface with solid particles attached[D]. Hefei:Hefei University of Technology,2017. [19] OREJON D,ASKOUNIS A,TAKATA Y,et al. Dropwise condensation on multi-scale bioinspired metallic surfaces with nano-features[J]. ACS Applied Materials & Interfaces,2019,11(27). [20] 吴阳. 超疏水复合绝缘子伞裙表面织构设计[D]. 宜昌:三峡大学,2018 WU Yang. Surface texture design of umbrella skirt of super- hydrophobic composite insulator[D]. Yichang:Three Gorges University.2018 [21] LIN Feng,LI Shuhong,LI Yingshun,et al. Super-hydrophobic surfaces:From natural to artificial[J]. Cheminform,2003,14(24):1857-1860. [22] 李嫚,贾乾忠,张弘弢,等. 基于表面微观形貌的聚晶金刚石脆性去除机理研究[J]. 机械工程学报,2014,50(13):202-206. LI Man,JIA Ganzhong,ZHANG Hongtao,et al. Study on brittle removal mechanism of polycrystalline diamond based on surface micro-morphology[J]. Journal of Mechanical Engineering,2014,50(13):202-206. [23] LIU Tao,YIN Yansheng,CHEN Shougang,et al. Super-hydrophobic surfaces improve corrosionresistance of copper in seawater[J]. Electrochimica Acta,2007,52:3709-3713. [24] VINAY P S,RAHUL V. Hierarchical growth of BiOCl on SrO-Bi2O3 -B2O3 glass ceramics for self-cleaning applications[J]. Journal of the American Ceramic Society,2018,101(7-38). [25] XU Qiao,DAI Bo,HUANG Yu,et al. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability[J]. Optics Express,2018,26(4):4172-4182. [26] 孙炎俊. 液滴撞击热固体表面动态特性实验研究[D]. 大连:大连理工大学,2018. SUN Yanjun. Experimental study on the dynamic characteristics of droplets hitting a hot solid surface[D]. Dalian:Dalian University of Technology,2018. [27] FANG S,LUIS L,DIRK B. Wear Characterization of cemented carbides (WC-CoNi) processed by laser surface texturing under abrasive machining conditions[J]. Lubricants,2017,5(3):20. [28] HAO Chonglei,LIU Yahua,CHEN Xuemei,et al. Bioinspired interfacial materials with enhanced drop mobility:From fundamentals to multifunctional applications[J]. Small,2016,12(14):1825-1839. [29] CLANET C,BGUIN C,RICHARD D,et al. Maximal deformation of an impacting drop[J]. Journal of Fluid Mechanics,2004,517:199-208. [30] CHANDRA S,AVEDISIAN C T. On the collision of a droplet with a solid surface[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences,1991,432(1884):13-41. [31] 张辉,刘洋,王伟,等. 织构化表面设计及其摩擦学应用[J]. 机械工程学报,55(17):85-93. ZHANG Hui,LIU Yang,WANG Wei,et al. Textured surface design and its tribological application[J]. Journal of Mechanical Engineering,55(17):85-93. [32] 吴圆峰. 激光织构表面对脂润滑向心关节轴承摩擦性能的影响[D]. 合肥:合肥工业大学.2017 WU Yuanfeng. Effect of laser textured surface on friction performance of grease lubricated radial spherical plain bearings[D]. Hefei:Hefei University of Technology,2017 [33] 刘舒鹏. 织构化硅片表面的摩擦学行为研究[D]. 北京:北京理工大学,2015 LIU Shupeng. Research on tribological behavior of textured silicon wafer surface[D]. Beijing:Beijing Institute of Technology,2015 [34] SALHI B,HOSSAIN M K,Al-SULAIMAN F. Wet-chemically etched silicon nanowire:Effect of etching parameters on the morphology and optical characterizations[J]. Solar Energy,2018,161:180-186. [35] PETE B,PETER L,EVA L U. Application of laser-ultrasonics to texture measurements in metal processing[J]. Acta Materialia,2017,123:329-336. [36] SUN Qingyun,YANG Meijun,LI Jun,et al. Heteroepitaxial growth of thick 3C-SiC (110) films by Laser CVD[J]. Journal of the American Ceramic Society,2019,102:4480-4491. [37] METZMAN J S,WANG G,MORRIS J R,et al. Enhanced scratch resistance of self-assembled silica nanoparticle anti-reflection coatings[J]. Journal of Materials Chemistry C,2018,13:35-40. [38] MAKKONEN L. A thermodynamic model of contact angle hysteresis[J]. Journal of Chemical Physics,2017,147(6):0647031-7. [39] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805,95(1805):65-87. [40] WU Pingkeng,ALEX D N,DARSH T W. Validity of the dynamic contact angle models[J]. Langmuir the ACS Journal of Surfaces & Colloids,2017,33:32-74. [41] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry,1936,28(8):988-994. [42] RIMA B,THIERRY A,ALEXIS G. Effect of chemical biodegradable polymers on surface energy:A static contact angle analysis of polyester model films[J]. Materials Science & Engineering C Materials for Biological Applications,2015,59(20):998-1006. [43] CASSIE A B D,BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40(21):546-551. [44] KOZBIAL A,TROUBA C,LIU H,et al. Characterize the intrinsic water wettability of graphite with contact angle measurement:Effect of defects on the static and dynamic contact angles.[J]. 2017,33(4):959-967. [45] JOSÉ B U T,DAVID Q. Wetting of textured surfaces[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,206(1-3):41-46. [46] 陈晓玲,吕田. 粗糙表面液滴表观形态研究[J]. 中国科学,2009(1):58-62. CHEN Xiaoling,LÜ Tian. Study on the apparent morphology of droplets on rough surfaces[J]. Science China Materials,2009(1):58-62. [47] MURAKAMI D,JINNAI H,TAKAHARA A. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces[J]. Langmuir the ACS Journal of Surfaces & Colloids,30(8):2061-2067. [48] GIACOMELLO A,MELONI S,CHINAPPI M,et al. Cassie-Baxter and Wenzel states on a nanostructured surface:phase diagram,metastabilities,and transition mechanism by atomistic free energy calculations[J]. Langmuir,2012,28(29):10764-10772. [49] EDWARD B. Wetting of real solid surfaces:new glance on well-known problems[J]. Colloid & Polymer Science,291(2):339-342. [50] BORMASHENKO E,STAROV V. Impact of surface forces on wetting of hierarchical surfaces and contact angle hysteresis[J]. Colloid & Polymer Science,291(2):343-346. [51] DHAR N,PURBARUN E,DAS T,et al. Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces[J]. The European Physical Journal,E. Soft Matter,2017,40:2-10. [52] GUI Na,XU Wei,TIAN Jie. Fabrication and anisotropic wettability of titanium-coated microgrooves[J]. Journal of Applied Physics,2018,123(9):095306.1-095306.8. [53] LATKO S,PETER D.M. SPELT P A. A level-set method for large-scale simulations of three-dimensional flows with moving contact lines[J]. Journal of Computational Physics,2017,348:151-170. [54] TURCO A,ALOUGES F,SIMONE D. Wetting on rough surfaces and contact angle hysteresis:numerical experiments based on a phase field model[J]. Esaim Mathematical Modelling & Numerical Analysis,43(6):1027-1044. [55] EVERETT D H,HAYNES J M. Model studies of capillary condensation. I. Cylindrical pore model with zero contact angle[J]. Journal of Colloid & Interface Science,38(1):125-137. [56] AURO A S,SUSHANTA K. MITRA J. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow[J]. J. Colloid Interface Sci.,2009,339(2):461-480. [57] SPENCER B J. Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski-Krastanow islands[J]. Physical Review B Condensed Matter,59(3):2011-2017. [58] ELLIS L,JONATHAN S,MCHALE G,GORDON L. Contact angle-based predictive model for slip at the solid-liquid interface of a transverse-shear mode acoustic wave device[J]. Journal of Applied Physics,94(9):6201-6207. [59] FURMIDGE C. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. Journal of Colloid Science,2017,17(4):309-324. [60] MIWA M,NAKAJIMA A,FUJISHIMA A. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir,16(13):5754-5760. [61] KRUPENKIN T N,TAYLOR J A,WANG E N,et al. Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces[J]. Langmuir,2007,23(18):9128-9133. [62] 叶自强. 高温高压环境下静态及动态接触角测量装置设计[D]. 大连:大连理工大学,2016. YE Ziqiang. Design of static and dynamic contact angle measuring devices under high temperature and high pressure environment[D]. Dalian:Dalian University of Technology,2016. [63] WANG Shutao,JIANG Lei. Definition of superhy drophobic states[J]. Advanced Materials,2007,19(21):3423-3424. [64] Schrader M E. Young-Dupre revisited[J]. Langmuir,11(9):3585-3589. [65] GÜNIAT L,MARTí S,SARA G. III-V integration on Si(100):Vertical nanospades[J]. ACS Nano,2019,13:5833-5840. [66] OREJON D,SHARDT O,GUNDA N S K,et al. Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces[J]. International Journal of Heat & Mass Transfer,2017,114:187-197. [67] V JANEČEK,V S NIKOLAYEV. Apparent-contact-angle model at partial wetting and evaporation:Impact of surface forces[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys.,2013,87(1-1):012404-12404. [68] 伍福璋. 微米级别因素对动态接触角影响的实验研究[D]. 南昌:南昌大学,2015. WU Fuzhang. Experimental study on the effect of micron-level factors on dynamic contact angle[D]. Nanchang:Nanchang University,2015. [69] ZHANG Huanxia,CAO Amin,LUO Yong kang. Effect of plasticizer of sizing agent on the surface of carbon fibers and interface of its composites[J]. advanced materials research,2011,337:10-15. [70] 张震,欧阳小龙,姜培学. 动态接触角对微米液滴冲击平板的影响[J]. 清华大学学报,2013,53(3):358-365. ZHANG Zhen,OUYANG Xiaolong,JIANG Peixue. Effect of dynamic contact angle on the impact of micron droplets on a flat plate[J]. Journal of Tsinghua University,2013,53(3):358-365. [71] 付一凡. 脉冲微孔喷射法均匀球形微米级粒子的制备及其影响因素研究[D]. 大连:大连理工大学,2013. FU Yifan. Preparation of uniform spherical micron particles by pulsed micropore jetting method and its influencing factors[D]. Dalian:Dalian University of Technology,2013. [72] VOGLER T,ERWIN A,KENDRICK B,et al. Design and operational characteristics of a robotic Wilhelmy balance[J]. Langmuir,9(9):2470-2477. [73] HONG Siangjie,CHANG Fengming,CHOU Tunghe,et al. Anomalous contact angle hysteresis of a captive bubble:advancing contact line pinning[J]. Langmuir,2011,27(11):6890-6896. [74] SARMA B,SHAHAPURE V,DALAL A,et al. Magnetowetting dynamics of sessile ferrofluid drops on soft surfaces[J]. Soft Matter,2020,16:s1-s6. [75] ZHU Xiaojue,RODOLFO O M,ROBERTO V. Direct numerical simulation of Taylor-Couette flow with grooved walls:Torque scaling and flow structure[J]. Journal of Fluid Mechanics,2016,794:746-774. [76] 蓝翊. 基于CFD模型的沉淀池优化研究进展[J]. 广东化工,2019,46(10):77-78. LAN Yi. Research progress of sedimentation tank optimization based on CFD model[J]. Guangdong Chemical Industry,2019,46(10):77-78. [77] GHASEMZADEH K,KHOSRAVI M,TILEBON S M S,et al. Theoretical evaluation of Pd-Ag membrane reactor performance during biomass steam gasification for hydrogen production using CFD method[J]. International Journal of Hydrogen Energy,2018,43(26):11719-11730. [78] HOU Weiliang,ZHANG Longping,ZHANG Jian,et al. Rheology evolution and CFD modeling of lignocellulose biomass during extremely high solids content pretreatment[J]. Biochemical Engineering Journal,2016,105:412-419. [79] LANZAFAME R,MAURO S,MESSINA M. Evaluation of the radial flow effects on micro HAWTs through the use of a transition CFD 3D model-Part II:Post-processing and comparison of the results[J]. Energy Procedia,82:164-171. [80] 李芳,刘鑫,陈德训,等. 流体力学软件众核架构适应性研究[C]//第十届全国流体力学学术会议. 2018.中国杭州. LI Fang,LIU Xin,CHEN Dexun,et al. Research on adaptability of many-core architecture of fluid mechanics software[C]//The 10th National Conference on Fluid Mechanics. 2018. Hangzhou,China. [81] KOLACZKOWSKI S T,CHAO R,AWDRY S,et al. Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets[J]. Chemical Engineering Research & Design,85(11):1539-1552. [82] 罗坚,张波,陈定千. 基于CFx的蒸汽蓄热器放汽闪蒸过程数值模拟[J]. 节能,2015,389(2):35-40. LUO Jian,ZHANG Bo,CHEN Dingqian. Numerical simulation of the steam release process of steam regenerator based on CFx[J]. Energy Conservation,2015,34(2):35-40. [83] STOLARSKI T,NAKASONE Y,YOSHIMOTO S. Analysis for fluid dynamics[J]. Engineering Analysis with ANSYS Software,2018,8(5):235-281. [84] LO D C,SU D T,CHEN J M. Application of computational fluid dynamics simulations to the analysis of bank effects in restricted waters[J]. Journal of Navigation,2009,62(3):477-491. [85] BASANI R,JANOCKO M,CARTIGNY M J B,et al. Mass FLOW-3D as a simulation tool for turbidity currents[M]//From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. 2014. [86] THAKKAR M,BUSSE A,SANDHAM N D. Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness[J]. Journal of Fluid Mechanics,2018,837:R1-R22. [87] ESCURE C,VARDELLE M,FAUCHAIS P. Experimental and theoretical study of the impact of alumina droplets on cold and hot substrates[J]. Plasma Chemistry & Plasma Processing,2003,23(2):185-221. [88] ROSEANNA N. Active and passive microrheology:Theory and simulation[J]. Annual Review of Fluid Mechanics,2018:371-405. [89] ZHAO Long,YAN Chang,YAO Rui. Modeling on micro-droplet formation for cell printing based on alternating viscous-inertial force jetting[J]. Journal of Manufacturing Science & Engineering,2016,139(1):1072-1095. [90] VAN G M,ANDREOTTI B,SNOEIJER J H. Dynamic solid surface tension causes droplet pinning and depinning[J]. Physical Review Letters,2018,121(20):2080031-5. [91] SHEN Chaoqun,LIU Xiangdong,YU Cheng. Visualization study on coalescence of droplets with different sizes in external liquid[J]. Canadian Journal of Chemical Engineering,2017,96:1-24. [92] CHU Guannan,LIN Caiyuan,LI Wei. Effect of internal pressure on springback during low pressure tube hydroforming[J]. International Journal of Material Forming,2018(1-3):1-12. [93] STEFANO D G. NEJADMALAYERI A,VASILYEV O V. Wall-resolved wavelet-based adaptive large-eddy simulation of bluff-body flows with variable thresholding[J]. Journal of Fluid Mechanics,2016,788:303-336. [94] MENG T,JOMELA C,COLONIUS T. Numerical simulation of the aerobreakup of a water droplet[J]. Journal of Fluid Mechanics,2017,835:1108-1135. [95] ROBERTO P,KARIM S. Contrail modeling and simulation[J]. Annual Review of Fluid Mechanics,2016,48(1):393-427. [96] ZENG Tianhai,SUN Zhengzhi,SHAO Bin. Statistical and strict momentum conservation[J]. International Journal of Theoretical Physics,2020,59(1):229-235. [97] 王洪伟. 我所理解的流体力学[M]. 北京:国防工业出版社,2014. WANG Hongwei. Fluid mechanics as I understand it[M]. Beijing:National Defense Industry Press,2014. [98] SALINERO J,A. GÓMEZ B,FUENTES C D,et al. The influence of CO2 gas concentration on the char temperature and conversion during oxy-fuel combustion in a fluidized bed[J]. Applied Energy,2018,215(108):116-130. [99] 刘伟,陶谦,丁士东. 页岩气水平井固井技术难点分析与对策[J]. 石油钻采工艺,2012,34(3):40-43. LIU Wei,TAO Qian,DING Shidong. Difficulties and countermeasures for cementing technology of salle gas horizontal well[J]. Oil Drilling Production Technology,2012,34(3):40-43. [100] FRAT S,SARBYK M,ELEBI E. Lateral load estimation from visco-plastic mud-flow around cylindrical row of piles[J]. Applied Mathematics & Computation,2006,173(2):803-821. [101] SONG Wuchao,WANG Cong,WEI Yingjie,et al. Experimental study of microbubble drag reduction on an axisymmetric body[J]. Modern Physics Letters B,2018,32(3):1850035.1-20. [102] ZHAI L S,JIN N D,GAO Z K,et al. Cross-correlation velocity measurement of horizontal oil-water two-phase flow by using parallel-wire capacitance probe[J]. Experimental Thermal & Fluid Science,2013,53(2):277-289. [103] 王海琴. 水平管油-水两相和油-气-水三相流动特性研究[D]. 北京:中国石油大学,2008. WANG Haiqin. Research on oil-water two-phase and oil-gas-water three-phase flow characteristics of horizontal tubes[D]. Beijing:China University of Petroleum,2008. [104] 王潇潇. 单液滴撞击水平壁面的动态特性研究[D]. 大连:大连理工大学,2016. WANG Xiaoxiao. Research on the dynamic characteristics of a single droplet hitting a horizontal wall[D]. Dalian:Dalian University of Technology,2016. [105] 张玉杰. 气液两相鼓泡动力学三维VOF数值模拟[D].天津:天津大学,2010. ZHANG Yujie. Three-dimensional VOF numerical simulation of gas-liquid two-phase bubbling dynamics[D]. Tianjin:Tianjin University,2010. [106] RAJESH V M,BUWA V V. Volume-of-fluid simulations of gas-liquid-Liquid flows in minichannels[J]. Chemical Engineering Journal,2018,345:001-050. [107] SHAHAB M,CHRISTOPHER B I,ALI M Comparison between the diffuse interface and volume of fluid methods for simulating two-phase flows[J]. International Journal of Multiphase Flow,2019,(116):221-238 [108] BOYAVAL S,CABOUSSAT A,MRAD A,et al. A semi-Lagrangian splitting method for the numerical simulation of sediment transport with free surface flows[J]. Computers & Fluids,2018,7(49):1-13. [109] ROMAN S,WANG Xingyu,CHEN Hsinchiang. Lagrangian particle method for compressible fluid dynamics[J]. Journal of Computational Physics,2018,362:1-19. [110] 汤祺. 离子液体-固体颗粒搅拌体系中的流体动力学特性研究[D]. 北京:北京化工大学,2018. TANG Qi. Study on hydrodynamic characteristics in ionic liquid-solid particle stirring system[D]. Beijing:Beijing University of Chemical Technology,2018. [111] ZHANG Mengxian,LI Yuxing,LI Yan,et al. Numerical simulations on the effect of sloshing on liquid flow maldistribution of randomly packed column[J]. Applied Thermal Engineering,2017,112:585-594. [112] KARPINSKA A M,BRIDGEMAN J. TOwards a robust CFD model for aeration tanks for sewage treatment-a lab-scale study[J]. Engineering Applications of Computational Fluid Mechanics,2017,11(1):371-395. [113] WEERASURIYA A. New inflow boundary conditions for modeling twisted wind profiles in CFD simulation for evaluating the pedestrian-level wind field near an isolated building[J]. Building & Environment,2018,132(MAR.):303-318. [114] JEAN M H,HURISSE B. Boundary conditions for the coupling of two-phase flow models[C]//AIAA CFD Conference. 2018. [115] LIU Hua,SANSALONE J. CFD and physical models of PM separation for urban drainage hydrodynamic unit operations[J]. Water Research,2019,154(MAY 1):258-266. [116] WU Mingqiu,JOHANNES G K,STEFAN R. The effect of liquid bridge model details on the dynamics of wet fluidized beds[J]. AICHE Journal,2018,64(2):437-456. [117] 李德伟. 液滴碰壁铺展与振荡的研究[D]. 大连:大连理工大学,2015. LI Dewei. Research on spreading and oscillation of droplets hitting the wall[D]. Dalian:Dalian University of Technology,2015. [118] JIANG Chen,ZHANG ZhiQian,HAN Xu,et al. A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows[J]. International Journal for Numerical Methods in Fluids,2018,86(1-38). [119] LI Shiyi,LI Qibing,FU Song,et al. A unified gas-kinetic scheme for axisymmetric flow in all Knudsen number regimes[J]. Journal of Computational Physics,2018,366(1):976-979. [120] 乔磊. 液滴撞击壁面过程的实验研究与数值模拟[D].大连:大连理工大学,2016. QIAO Lei. Experimental research and numerical simulation of the process of droplets hitting the wall[D]. Dalian:Dalian University of Technology,2016. [121] TSENG S F,HSIAO W T,CHEN M F,et al. Surface wettability of silicon substrates enhanced by laser ablation[J]. Applied Physics,2010,A101(2):303-308. [122] 于海武,王晓雷,孙造,等. 圆柱形微凹坑表面织构对流体动压润滑性能的影响[J]. 南京航空航天大学学报,2010,42(2):209-213. YU Haiwu,WANG Xiaolei,SUN Zao,et al. Effect of surface texture of cylindrical micro-pits on hydrodynamic lubrication performance[J]. Journal of Nanjing University of Aeronautics and Astronautics,2010,42(2):209-213. [123] GROPPER D,LING W,HARVEY T J. Hydrodynamic lubrication of textured surfaces:A review of modeling techniques and key findings[J]. Tribology International,2016,94:509-529. [124] 纪敬虎,管采薇,符昊,等. 粗糙度对微凹坑织构化表面摩擦学性能的影响[J]. 润滑与密封,2018,43(1):20-25. JI Jinghu,GUAN Caiwei,FU Hao,et al. The effect of roughness on the tribological properties of micro-pit textured surface[J]. Lubrication Engineering,2018,43(1):20-25. [125] COSTA H L,HUTCHINGS I M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions[J]. Tribology International,2007,40(8):1227-1238. [126] MALOUIN B A,KORATKAR N A,HIRSA A H,et al. Directed rebounding of droplets by microscale surface roughness gradients[J]. Applied Physics Letters,2010,96(23):234103.1-234103.3. [127] MURUGADOSS K,DHAR P,DAS S K. Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces[J]. European Physical Journal E,2017,40(1):1-10. [128] GOGTE S,VOROBIEFF P,TRUESDELL R,et al. Effective slip on textured superhydrophobic surfaces[J]. Physics of Fluids,2005,17(5):51701.1-5. [129] 马晨波,朱华,孙见君. 椭圆形截面织构的最优参数设计模型[J]. 中南大学学报,2012,43(3):953-959. MA Chenbo,ZHU Hua,SUN Jianjun. Optimal parameter design model of elliptical cross-sectional texture[J]. Journal of Central South University,2012,43(3):953-959. [130] SHINKARENKO A. The effect of surface texturing in soft elasto-hydrodynamic lubrication[J]. Tribology International,2009,42(2):284-292. [131] FELDMAN Y,KLIGERMAN Y,ETSION I. A hydrostatic laser surface textured gas seal[J]. Tribology Letters,22(1):21-28. [132] 尹必峰,钱晏强,李晓东.柴油机缸套表面微沟槽织构润滑性能仿真分析[J]. 中国机械工程,2013(5):644-650. YIN Bifeng,QIAN Yanqiang,LI Xiaodong. Simulation and analysis on lubrication performance of surface micro-groove texturing on cylinder liner in diesel engine[J]. China Mechanical Engineering,2013(5):644-650. [133] KOVALCHENKO A,AJAYI O,ERDEMIR A,et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J]. Tribology International,2005,38(3):219-225. [134] NACER T I,MICHEL F,PATRICK M. Effect of textured area on the performances of a hydrodynamic journal bearing[J]. Tribology International,2011,44(3):211-219. [135] TAN Na,XING Zhiguo,WANG Xiaoli. Deposition mechanism of plasma sprayed droplets on textured surfaces with different diameter-to-distance ratios[J]. Materials & Design,133(11):19-29. |
[1] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[2] | 胡龙, 刘红艳, 成慧梅, 陈维奇, 冯广杰, 叶延洪, 邓德安. 超高强耐磨钢NM500多层多道对接接头残余应力的研究[J]. 机械工程学报, 2024, 60(4): 335-344. |
[3] | 宋军, 唐倩, 罗智超, 冯琪翔, 聂云飞, 任治好. 马氏体时效钢激光选区熔化成形过程介观尺度数值模拟[J]. 机械工程学报, 2024, 60(3): 282-295. |
[4] | 胡成亮, 苗宏量, 曾凡, 赵震, 汤敏俊, 汤晓峰. 热成形条件下软磁材料的磁感应强度预测模型[J]. 机械工程学报, 2024, 60(2): 132-139,149. |
[5] | 樊丁, 李德全, 侯英杰, 黄健康, 冯 毅. GMAW潜弧焊电弧-熔池耦合行为数值分析[J]. 机械工程学报, 2024, 60(2): 159-167. |
[6] | 王刚, 谷诤巍, 于歌, 李欣. 热成形工艺条件下7075-H18铝合金板材塑性流动行为的本构建模[J]. 机械工程学报, 2024, 60(2): 188-196. |
[7] | 戴志远, 李田, 张卫华, 张继业. 不同海拔高度环境下高速列车气动特性研究[J]. 机械工程学报, 2024, 60(16): 291-305. |
[8] | 陈佳佳, 刘松炎, 杨勇, 袁冬冬, 张立勇, 傅玉灿, 钱宁. 纳米流体热管砂轮成型磨削钛合金换热性能评价[J]. 机械工程学报, 2024, 60(15): 407-419. |
[9] | 傅德彬, 李超艳, 陈四春, 徐晓明. 密闭空间内射流冲击波传递特性[J]. 机械工程学报, 2024, 60(14): 338-346. |
[10] | 童哲铭, 马鑫航. 基于孪生支持向量回归的多级离心泵外特性曲线预测及设计方法[J]. 机械工程学报, 2024, 60(14): 364-377. |
[11] | 田文卿, 蔡超, 郭瑞鹏, 史玉升. 热等静压近净成形数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(1): 13-26. |
[12] | 于正洋, 钟斌, 张传伟, 赵升吨. 304不锈钢棒料连续旋弯低应力精密下料断裂预测[J]. 机械工程学报, 2024, 60(1): 190-197. |
[13] | 陈鑫, 王佳宁, 杨立飞, 张冠宸. 6061-T6铝合金薄板剪切试件设计及动态剪切力学特性分析[J]. 机械工程学报, 2023, 59(4): 62-70. |
[14] | 孙瑶, 蔡路, 秦登, 李田, 张继业. 车窗开闭状态对双层列车车厢内火灾烟气特性的影响[J]. 机械工程学报, 2023, 59(4): 232-240. |
[15] | 梁归慧, 谢锋, 韩世伟, 骆文泽, 邓德安. 1 500 MPa级超高强钢复杂薄壁结构焊接变形预测[J]. 机械工程学报, 2023, 59(24): 95-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||