• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (14): 35-43.doi: 10.3901/JME.2022.14.035

• 特邀专栏:大型构件视觉测量与机器人加工 • 上一篇    下一篇

扫码分享

机器人铣削加工误差视觉跟踪测量与补偿研究

邸红采1, 彭芳瑜1,2, 唐小卫1, 闫蓉1   

  1. 1. 华中科技大学机械科学与工程学院 武汉 430074;
    2. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074
  • 收稿日期:2021-06-07 修回日期:2021-12-15 出版日期:2022-07-20 发布日期:2022-09-07
  • 通讯作者: 唐小卫(通信作者),男,1985年出生,博士,讲师,硕士研究生导师。主要研究方向为机器人铣削加工动力学、误差测量和精度控制。E-mail:txwysxf@126.com
  • 作者简介:邸红采,女,1997年出生,硕士研究生。主要研究方向为机器人铣削加工误差测量和补偿。E-mail:1437996264@qq.com;彭芳瑜,男,1972年出生,博士,教授,博士研究生导师。主要研究方向为数控加工技术、机器人加工和智能制造等。E-mail:pengfy@hust.edu.cn;闫蓉,女,1973年出生,博士,副教授,博士研究生导师。主要研究方向为多轴数控加工。E-mail:yanrong@hust.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51625502,51805189,U20A20294)。

Research on Vision Tracking Measurement and Compensation of Robot Milling Error

DI Hongcai1, PENG Fangyu1,2, TANG Xiaowei1, YAN Rong1   

  1. 1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074;
    2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2021-06-07 Revised:2021-12-15 Online:2022-07-20 Published:2022-09-07

摘要: 机器人铣削加工是大型复杂构件的重要加工手段,然而由于机器人本体结构特点及零部件制造、安装等误差,使其在大行程运动过程中轨迹绝对精度较低,严重制约机器人铣削加工的应用工况。现有机器人精度的传感测量控制方法主要集中在基于视觉的定位误差预测和激光跟踪仪的轨迹误差测量等,前者难以考虑铣削轨迹误差,后者操作复杂且设备极其昂贵。为此,提出一种利用双目视觉系统跟踪测量的机器人铣削加工刀具端位置误差计算和加工误差补偿方法,实现机器人铣削加工误差的高效准确预测和补偿。其中通过训练粒子群算法(Particle swarm optimization,PSO)优化的BP神经网络建立了位姿相关的机器人加工刀具TCP位置误差预测模型,基于弦截法建立了位置误差迭代模型,制定了轨迹误差的综合补偿策略。试验结果表明机器人铣削加工最大切深误差从1.354 mm降低到0.244 mm,为机器人铣削加工工况扩展提供了理论和技术基础。

关键词: 机器人铣削, 视觉跟踪测量, 加工误差, 综合补偿, BP神经网络

Abstract: Robot milling is an important method of large complex curved surface processing, however, because of the industrial robot structure and components manufacturing, installation error, the absolute accuracy of its trajectory is low in the process of large stroke movement, significantly restrict the application conditions range of milling. The current sensing and control methods of robot precision mainly focus on the prediction of positioning error based on vision and the measurement of trajectory error based on laser tracker, the former is difficult to account for milling track errors, while the latter is operation complex and extremely expensive. Thus, a method of tool end position error calculation and machining error compensation in robotic milling is proposed, and the precision prediction and compensation of robot milling errors are realized. By training the BP neural network optimized by particle swarm optimization (PSO), the position error prediction model of robot machining tool TCP is established, the position error iteration model is established based on the truncation method, and the comprehensive compensation strategy of trajectory error is formulated. The experimental results show that the maximum cutting error of robotic milling is reduced from 1.354 mm to 0.244 mm, which provides a theoretical and technical basis for the extension of robotic milling conditions.

Key words: robot milling, vision tracking measurement, machining error, comprehensive compensation, BP neural network

中图分类号: