机械工程学报 ›› 2022, Vol. 58 ›› Issue (11): 11-36.doi: 10.3901/JME.2022.11.011
阴贺生, 裴硕, 徐磊, 黄博
收稿日期:
2021-10-07
修回日期:
2022-01-15
出版日期:
2022-06-05
发布日期:
2022-08-08
通讯作者:
黄博(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为数字化智能装备及机器人SLAM技术。E-mail:huangboweihai@hit.edu.cn
作者简介:
阴贺生,男,1992年出生,博士研究生。主要研究方向为多机器人视觉SLAM、多传感器融合SLAM技术。E-mail:yhs_hit@163.com;裴硕,男,1994年出生,博士研究生。主要研究方向为上肢康复机器人、运动规划。E-mail:pluntzzz@163.com;徐磊,男,1999年出生,硕士研究生。主要研究方向为机器人视觉SLAM及导航技术。E-mail:xulei3shi@163.com
基金资助:
YIN Hesheng, PEI Shuo, XU Lei, HUANG Bo
Received:
2021-10-07
Revised:
2022-01-15
Online:
2022-06-05
Published:
2022-08-08
摘要: 同时定位与建图(Simultaneous localization and mapping, SLAM)技术是复杂、动态且GPS失效环境下多机器人系统(Multi-robot system, MRS)协同工作的基础和关键技术,对于提高机器人的自主化、智能化等具有重要意义。视觉传感器凭借其高分辨率、信息丰富、成本低廉等优点在SLAM中得到了广泛应用。首先简要回顾视觉SLAM理论基础,概括了多机器人视觉SLAM(Multi-robot visual SLAM, MR-VSLAM)的本质及优势,并基于该研究领域的应用需求总结归纳了当前MR-VSLAM技术存在的重点科学问题:如何进行视觉SLAM的全局关联,如何分配机器人资源执行SLAM驱动的协作建图策略,以及如何实现鲁棒的主动SLAM。其次,针对每个核心问题,对现有的解决方法进行了分类,提供了现有方法的全面综述,并讨论了其优缺点,分析了当前MR-VSLAM关键技术存在的问题。最后,基于上述分析总结展望了MR-VSLAM技术的热点问题及发展趋势。
中图分类号:
阴贺生, 裴硕, 徐磊, 黄博. 多机器人视觉同时定位与建图技术研究综述[J]. 机械工程学报, 2022, 58(11): 11-36.
YIN Hesheng, PEI Shuo, XU Lei, HUANG Bo. Review of Research on Multi-robot Visual Simultaneous Localization and Mapping[J]. Journal of Mechanical Engineering, 2022, 58(11): 11-36.
[1] 关英姿,刘文旭,焉宁,等. 空间多机器人协同运动规划研究[J]. 机械工程学报,2019,55(12):37-43. GUAN Yingzi,LIU Wenxu,YAN Ning,et al. Research on cooperative motion planning of space multi-robots[J]. Journal of Mechanical Engineering,2019,55(12):37-43. [2] ARAI T,PAGELLO E,PARKER L E. Advances in multi-robot systems[J]. IEEE Transactions on Robotics and Automation,2002,18(5):655-661. [3] RIZK Y,AWAD M,TUNSTEL E W. Cooperative heterogeneous multi-robot systems:A survey[J]. ACM Computing Surveys (CSUR),2019,52(2):1-31. [4] FARINELLI A,ZANOTTO E,PAGELLO E. Advanced approaches for multi-robot coordination in logistic scenarios[J]. Robotics and Autonomous Systems,2017,90:34-44. [5] KRUIJFF-KORBAYOVá I,COLAS F,GIANNI M,et al. Tradr project:Long-term human-robot teaming for robot assisted disaster response[J]. KI-Künstliche Intelligenz,2015,29(2):193-201. [6] AL-HUSSAINI S,GREGORY J M,GUAN Y,et al. Generating alerts to assist with task assignments in human-supervised multi-robot teams operating in challenging environments[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Las Vegas:IEEE,2020:11245-11252. [7] SCHUSTER M J,MüLLER M G,BRUNNER S G,et al. The ARCHES space-analogue demonstration mission:Towards heterogeneous teams of autonomous robots for collaborative scientific sampling in planetary exploration[J]. IEEE Robotics and Automation Letters,2020,5(4):5315-5322. [8] OLSON E,STROM J,MORTON R,et al. Progress toward multi-robot reconnaissance and the MAGIC 2010 competition[J]. Journal of Field Robotics,2012,29(5):762-792. [9] SAEEDI S,TRENTINI M,SETO M,et al. Multiple-robot simultaneous localization and mapping:A review[J]. Journal of Field Robotics,2016,33(1):3-46. [10] TAKETOMI T,UCHIYAMA H,IKEDA S. Visual SLAM algorithms:A survey from 2010 to 2016[J]. IPSJ Transactions on Computer Vision and Applications,2017,9(1):1-11. [11] KHAIRUDDIN A R,TALIB M S,HARON H. Review on simultaneous localization and mapping (SLAM)[C]//Proceedings of the 2015 IEEE International Conference on Control System,Computing and Engineering (ICCSCE),George Town,Malaysia:IEEE,2015:85-90. [12] 高翔,张涛,颜沁睿,等. 视觉SLAM十四讲:从理论到实践[M]. 北京:电子工业出版社,2017. GAO Xiang,ZHANG Tao,YAN Qinrui,et al. Fourteen lectures on visual SLAM:From theory to practice[M]. Beijing:Publishing House of Electronics Industry,2017. [13] MUEGGLER E,REBECQ H,GALLEGO G,et al. The event-camera dataset and simulator:Event-based data for pose estimation,visual odometry,and SLAM[J]. The International Journal of Robotics Research,2017,36(2):142-149. [14] ENDRES F,HESS J,ENGELHARD N,et al. An evaluation of the RGB-D SLAM system[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Automation,Bielefeld:IEEE,2012:1691-1696. [15] CHO Y,KIM A. Visibility enhancement for underwater visual SLAM based on underwater light scattering model[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:710-717. [16] NIKOLIC J,REHDER J,BURRI M,et al. A synchronized visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),Hong Kong:IEEE,2014:431-437. [17] SHIN Y-S,PARK Y S,KIM A. Direct visual slam using sparse depth for camera-lidar system[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),Brisbane:IEEE,2018:5144-5151. [18] KROMBACH N,DROESCHEL D,HOUBEN S,et al. Feature-based visual odometry prior for real-time semi-dense stereo SLAM[J]. Robotics and Autonomous Systems,2018,109:38-58. [19] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110. [20] BAY H,TUYTELAARS T,VAN GOOL L. Surf:Speeded up robust features[C]//Proceedings of the European Conference on Computer Vision,Graz,Austria:Springer,2006:404-417. [21] RUBLEE E,RABAUD V,KONOLIGE K,et al. ORB:An efficient alternative to SIFT or SURF[C]//Proceedings of the 2011 International Conference on Computer Vision,Barcelona,Spain:IEEE,2011:2564-2571. [22] DOHERTY K J,BAXTER D P,SCHNEEWEISS E,et al. Probabilistic data association via mixture models for robust semantic SLAM[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA),Paris:IEEE,2020:1098-1104. [23] CADENA C,CARLONE L,CARRILLO H,et al. Past,present,and future of simultaneous localization and mapping:Toward the robust-perception age[J]. IEEE Transactions on Robotics,2016,32(6):1309-1332. [24] NEWCOMBE R A,LOVEGROVE S J,DAVISON A J. DTAM:Dense tracking and mapping in real-time[C]//Proceedings of the 2011 International Conference on Computer Vision,Barcelona,Spain:IEEE,2011:2320-2327. [25] ENGEL J,SCHöPS T,CREMERS D. LSD-SLAM:Large-scale direct monocular SLAM[C]//Proceedings of the European Conference on Computer Vision,Zurich,Switzerland:Springer,2014:834-849. [26] WANG R,SCHWORER M,CREMERS D. Stereo DSO:Large-scale direct sparse visual odometry with stereo cameras[C]//Proceedings of the IEEE International Conference on Computer Vision,Venice:IEEE,2017:3903-3911. [27] FORSTER C,ZHANG Z,GASSNER M,et al. SVO:Semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics,2016,33(2):249-265. [28] GREENE W N,ROY N. Metrically-scaled monocular slam using learned scale factors[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA),Paris:IEEE,2020:43-50. [29] LI S,XU C,XIE M. A robust O (n) solution to the perspective-n-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1444-1450. [30] GAO X S,HOU X R,TANG J,et al. Complete solution classification for the perspective-three-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8):930-943. [31] ABDEL-AZIZ Y I,KARARA H,HAUCK M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering & Remote Sensing,2015,81(2):103-107. [32] LEPETIT V,MORENO-NOGUER F,FUA P. Epnp:An accurate o (n) solution to the pnp problem[J]. International Journal of Computer Vision,2009,81(2):155-166. [33] TRIGGS B,MCLAUCHLAN P F,HARTLEY R I,et al. Bundle adjustment-a modern synthesis[C]//Proceedings of the International Workshop on Vision Algorithms,Corfu,Greece:Springer,1999:298-372. [34] LI S,LEE D. Fast visual odometry using intensity-assisted iterative closest point[J]. IEEE Robotics and Automation Letters,2016,1(2):992-999. [35] CHETVERIKOV D,SVIRKO D,STEPANOV D,et al. The trimmed iterative closest point algorithm[C]//Proceedings of the Object Recognition Supported by User Interaction for Service Robots,2002. IEEE:545-548. [36] CAMPOS C,ELVIRA R,RODRíGUEZ J J G,et al. ORB-SLAM3:An accurate open-source library for visual,visual-inertial,and multimap SLAM[J]. IEEE Transactions on Robotics,2021,37(6):1874-1890. [37] STRASDAT H,MONTIEL J M,DAVISON A J. Visual SLAM:why filter?[J]. Image and Vision Computing,2012,30(2):65-77. [38] GRISETTI G,KüMMERLE R,STACHNISS C,et al. A tutorial on graph-based SLAM[J]. IEEE Intelligent Transportation Systems Magazine,2010,2(4):31-43. [39] RIBEIRO M I. Kalman and extended kalman filters:Concept,derivation and properties[J]. Institute for Systems and Robotics,2004,43:46. [40] SäRKKä S,VEHTARI A,LAMPINEN J. Rao-Blackwellized particle filter for multiple target tracking[J]. Information Fusion,2007,8(1):2-15. [41] CADENA C,NEIRA J. SLAM in O (logn) with the Combined Kalman-Information Filter[J]. Robotics and Autonomous Systems,2010,58(11):1207-1219. [42] DISSANAYAKE G,HUANG S,WANG Z,et al. A review of recent developments in simultaneous localization and mapping[C]//Proceedings of the 20116th International Conference on Industrial and Information Systems,IEEE,2011:477-482. [43] SüNDERHAUF N,PROTZEL P. Switchable constraints for robust pose graph SLAM[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,Vilamoura:IEEE,2012:1879-1884. [44] INDELMAN V,WILLIAMS S,KAESS M,et al. Information fusion in navigation systems via factor graph based incremental smoothing[J]. Robotics and Autonomous Systems,2013,61(8):721-738. [45] ANGELI A,FILLIAT D,DONCIEUX S,et al. Fast and incremental method for loop-closure detection using bags of visual words[J]. IEEE Transactions on Robotics,2008,24(5):1027-1037. [46] SIAM S M,ZHANG H. Fast-SeqSLAM:A fast appearance based place recognition algorithm[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:5702-5708. [47] TSINTOTAS K A,BAMPIS L,GASTERATOS A. Probabilistic appearance-based place recognition through bag of tracked words[J]. IEEE Robotics and Automation Letters,2019,4(2):1737-1744. [48] WANG C,MA H,CHEN W,et al. Efficient autonomous exploration with incrementally built topological map in 3-D environments[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(12):9853-9865. [49] MUR-ARTAL R,MONTIEL J M M,TARDOS J D. ORB-SLAM:A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics,2015,31(5):1147-1163. [50] MUR-ARTAL R,TARDóS J D. Orb-slam2:An open-source slam system for monocular,stereo,and rgb-d cameras[J]. IEEE Transactions on Robotics,2017,33(5):1255-1262. [51] PIZZOLI M,FORSTER C,SCARAMUZZA D. REMODE:Probabilistic,monocular dense reconstruction in real time[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),Hong Kong:IEEE,2014:2609-2616. [52] WHELAN T,KAESS M,JOHANNSSON H,et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The International Journal of Robotics Research,2015,34(4-5):598-626. [53] XU Y,JOHN V,MITA S,et al. 3D point cloud map based vehicle localization using stereo camera[C]//Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV),Los Angeles:IEEE,2017:487-492. [54] WHELAN T,KAESS M,FALLON M,et al. Kintinuous:Spatially extended kinectfusion[EB/OL].[2021-10-19]. http://hdl.handle.net/1721.1/71756. [55] STüCKLER J,BEHNKE S. Multi-resolution surfel maps for efficient dense 3D modeling and tracking[J]. Journal of Visual Communication and Image Representation,2014,25(1):137-147. [56] FEHR M,FURRER F,DRYANOVSKI I,et al. TSDF-based change detection for consistent long-term dense reconstruction and dynamic object discovery[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:5237-5244. [57] NEWCOMBE R A,IZADI S,HILLIGES O,et al. Kinectfusion:Real-time dense surface mapping and tracking[C]//Proceedings of the 201110th IEEE International Symposium on Mixed and Augmented Reality,IEEE,2011:127-136. [58] WHELAN T,LEUTENEGGER S,SALAS-MORENO R,et al. ElasticFusion:Dense SLAM without a pose graph[C]//Robotics:Science and Systems,Rome,Italy,2015. doi:10.15607/RSS.2015.XI.001. [59] NEWCOMBE R A,FOX D,SEITZ S M. Dynamicfusion:Reconstruction and tracking of non-rigid scenes in real-time[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston,Massachusetts:IEEE,2015:343-352. [60] VESPA E,NIKOLOV N,GRIMM M,et al. Efficient octree-based volumetric SLAM supporting signed-distance and occupancy mapping[J]. IEEE Robotics and Automation Letters,2018,3(2):1144-1151. [61] WURM K M,HORNUNG A,BENNEWITZ M,et al. OctoMap:A probabilistic,flexible,and compact 3D map representation for robotic systems[C]//Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation,2010:2. [62] HORNUNG A,WURM K M,BENNEWITZ M,et al. OctoMap:An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots,2013,34(3):189-206. [63] SALAS-MORENO R F,NEWCOMBE R A,STRASDAT H,et al. Slam++:Simultaneous localisation and mapping at the level of objects[C]//Proceedings of of the IEEE Conference on Computer Vision and Pattern Recognition,Portland,Oregon:IEEE,2013:1352-1359. [64] LAI K,BO L,FOX D. Unsupervised feature learning for 3d scene labeling[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),Hong Kong:IEEE,2014:3050-3057. [65] MCCORMAC J,HANDA A,DAVISON A,et al. Semanticfusion:Dense 3d semantic mapping with convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:4628-4635. [66] MA X,GUO R,LI Y,et al. Adaptive genetic algorithm for occupancy grid maps merging[C]//Proceedings of the 20087th World Congress on Intelligent Control and Automation,Chongqing:IEEE,2008:5716-5720. [67] 马昕,宋锐,郭睿,等. 基于免疫自适应遗传算法的机器人栅格地图融合[J]. 控制理论与应用,2009,26(009):1004-1008. MA Xin,SONG Rui,GUO Rui,et al. Immune adaptive genetic algorithm for occupancy grid maps merging[J]. Control Theory & Applications,2009,26(009):1004-1008. [68] SCHMUCK P,CHLI M. CCM-SLAM:Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams[J]. Journal of Field Robotics,2019,36(4):763-781. [69] SCARAMUZZA D,FRAUNDORFER F. Tutorial:visual odometry[J]. IEEE Robotics and Automation Magazine,2011,18(4):80-92. [70] SüNDERHAUF N,SHIRAZI S,DAYOUB F,et al. On the performance of convnet features for place recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany:IEEE,2015:4297-4304. [71] ARANDJELOVIC R,GRONAT P,TORII A,et al. NetVLAD:CNN architecture for weakly supervised place recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas:IEEE,2016:5297-5307. [72] LAJOIE P-Y,RAMTOULA B,CHANG Y,et al. DOOR-SLAM:Distributed,online,and outlier resilient SLAM for robotic teams[J]. IEEE Robotics and Automation Letters,2020,5(2):1656-1663. [73] GEIGER A,LENZ P,STILLER C,et al. Vision meets robotics:The kitti dataset[J]. The International Journal of Robotics Research,2013,32(11):1231-1237. [74] SIPIRAN I,BUSTOS B. Harris 3D:A robust extension of the Harris operator for interest point detection on 3D meshes[J]. The Visual Computer,2011,27(11):963-976. [75] MIAN A,BENNAMOUN M,OWENS R. On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes[J]. International Journal of Computer Vision,2010,89(2-3):348-361. [76] ZHONG Y. Intrinsic shape signatures:A shape descriptor for 3d object recognition[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops,ICCV Workshops,IEEE,2009:689-696. [77] BOROSON E R,AYANIAN N. 3D Keypoint Repeatability for Heterogeneous Multi-Robot SLAM[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),Montreal,Canada:IEEE,2019:6337-6343. [78] JOHNSON A E,HEBERT M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):433-449. [79] RUSU R B,BLODOW N,BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//Proceedings of the 2009 IEEE International Conference on Robotics and Automation,Orlando,Florida:IEEE,2009:3212-3217. [80] TOMBARI F,SALTI S,DI STEFANO L. Unique signatures of histograms for local surface description[C]//Proceedings of the European Conference on Computer Vision,Crete,Greece:Springer,2010:356-369. [81] GIUBILATO R,VAYUGUNDLA M,SCHUSTER M J,et al. Relocalization with submaps:Multi-session mapping for planetary rovers equipped with stereo cameras[J]. IEEE Robotics and Automation Letters,2020,5(2):580-587. [82] AHONEN T,HADID A,PIETIKAINEN M. Face description with local binary patterns:Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041. [83] GORISSE D,CORD M,JORDAN M,et al. 3d content-based retrieval in artwork databases[C]//Proceedings of the 20073DTV Conference,Kos,Greece:IEEE,2007:1-4. [84] ZAHARIA T,PRêTEUX F. Shape-based retrieval of 3D mesh models[C]//Proceedings of the IEEE International Conference on Multimedia and Expo,Lausanne,Switzerland:IEEE,2002:437-440. [85] SCHUSTER M J,SCHMID K,BRAND C,et al. Distributed stereo vision-based 6D localization and mapping for multi-robot teams[J]. Journal of Field Robotics,2019,36(2):305-332. [86] SCHMID K,RUESS F,BURSCHKA D. Local reference filter for life-long vision aided inertial navigation[C]//Proceedings of the 17th International Conference on Information Fusion (FUSION),Salamanca,Spain:IEEE,2014:1-8. [87] SCHUSTER M J,BRAND C,HIRSCHMüLLER H,et al. Multi-robot 6D graph SLAM connecting decoupled local reference filters[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany:IEEE,2015:5093-5100. [88] TOMBARI F,SALTI S,DI STEFANO L. A combined texture-shape descriptor for enhanced 3D feature matching[C]//Proceedings of the 201118th IEEE International Conference on Image Processing,Brussels,Belgium:IEEE,2011:809-812. [89] BOWMAN S L,ATANASOV N,DANIILIDIS K,et al. Probabilistic data association for semantic slam[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:1722-1729. [90] JAMIESON S,FATHIAN K,KHOSOUSSI K,et al. Multi-Robot distributed semantic mapping in unfamiliar environments through online matching of learned representations[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA),Xian,China:IEEE,2021:8587-8593. [91] FATHIAN K,KHOSOUSSI K,TIAN Y,et al. Clear:A consistent lifting,embedding,and alignment rectification algorithm for multiview data association[J]. IEEE Transactions on Robotics,2020,36(6):1686-1703. [92] ZHANG Z,SHI Q,MCAULEY J,et al. Pairwise matching through max-weight bipartite belief propagation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas:IEEE,2016:1202-1210. [93] TCHUIEV V,INDELMAN V. Distributed consistent multi-robot semantic localization and mapping[J]. IEEE Robotics and Automation Letters,2020,5(3):4649-4656. [94] GUO X,HU J,CHEN J,et al. Semantic histogram based graph matching for real-Time multi-robot global localization in large scale environment[J]. IEEE Robotics and Automation Letters,2021,6(4):8349-8356. [95] YAMAUCHI B. Frontier-based exploration using multiple robots[C]//Proceedings of the Second International Conference on Autonomous Agents,New York:Association for Computing Machinery,1998:47-53. [96] SILPA-ANAN C,HARTLEY R. Optimised KD-trees for fast image descriptor matching[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition,New York,USA:IEEE,2008:1-8. [97] FAIGL J,SIMONIN O,CHARPILLET F. Comparison of task-allocation algorithms in frontier-based multi-robot exploration[C]//Proceedings of the European Conference on Multi-Agent Systems,Prague,Czech Republic:Springer,2014:101-110. [98] YAMAUCHI B. A frontier-based approach for autonomous exploration[C]//Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97'Towards New Computational Principles for Robotics and Automation',Monterey,USA:IEEE,1997:146-151. [99] JULIá M,GIL A,REINOSO O. A comparison of path planning strategies for autonomous exploration and mapping of unknown environments[J]. Autonomous Robots,2012,33(4):427-444. [100] BURGARD W,MOORS M,STACHNISS C,et al. Coordinated multi-robot exploration[J]. IEEE Transactions on Robotics,2005,21(3):376-386. [101] BAUTIN A,SIMONIN O,CHARPILLET F. MinPos:A novel frontier allocation algorithm for multi-robot exploration[C]//Proceedings of the International Conference on Intelligent Robotics and Applications,Berlin,Heidelberg:Springer,2012:496-508. [102] LAVALLE S M. Rapidly-exploring random trees:A new tool for path planning[EB/OL]. Ames,USA:Iowa State University,1998[2021-10-21]. http://janowiec.cs.iastate.edu/~lavalle/papers/rrt.ps. [103] BAUTIN A,SIMONIN O,CHARPILLET F. Minpos:A novel frontier allocation algorithm for multi-robot exploration[C]//Proceedings of the International Conference on Intelligent Robotics and Applications,Berlin,Heidelberg:Springer,2012:496-508. [104] UMARI H,MUKHOPADHYAY S. Autonomous robotic exploration based on multiple rapidly-exploring randomized trees[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Vancouver,Canada:IEEE,2017:1396-1402. [105] STRöM D P,BOGOSLAVSKYI I,STACHNISS C. Robust exploration and homing for autonomous robots[J]. Robotics and Autonomous Systems,2017,90:125-135. [106] COLARES R G,CHAIMOWICZ L. The next frontier:Combining information gain and distance cost for decentralized multi-robot exploration[C]//Proceedings of the 31st Annual ACM Symposium on Applied Computing,New York,USA:Association for Computing Machinery,2016:268-274. [107] SMITH A J,HOLLINGER G A. Distributed inference-based multi-robot exploration[J]. Autonomous Robots,2018,42(8):1651-1668. [108] ZHANG L,LIN Z,WANG J,et al. Rapidly-exploring Random Trees multi-robot map exploration under optimization framework[J]. Robotics and Autonomous Systems,2020,131:103565. [109] SHI T,GU W,CHHAJED D,et al. Effects of remanufacturable product design on market segmentation and the environment[J]. Decision Sciences,2016,47(2):298-332. [110] WURM K M,STACHNISS C,BURGARD W. Coordinated multi-robot exploration using a segmentation of the environment[C]//Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,Nice,France:IEEE,2008:1160-1165. [111] YANG J,KANG Z,ZENG L,et al. Semantics-guided reconstruction of indoor navigation elements from 3D colorized points[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,173:238-261. [112] ZIVKOVIC Z,BAKKER B,KROSE B. Hierarchical map building and planning based on graph partitioning[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation,Orlando,USA:IEEE,2006:803-809. [113] BLOCHLIGER F,FEHR M,DYMCZYK M,et al. Topomap:Topological mapping and navigation based on visual slam maps[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),Brisbane:IEEE,2018:3818-3825. [114] CHOPRA S,NOTARSTEFANO G,RICE M,et al. A distributed version of the hungarian method for multirobot assignment[J]. IEEE Transactions on Robotics,2017,33(4):932-947. [115] PUIG D,GARCIA M A,WU L. A new global optimization strategy for coordinated multi-robot exploration:Development and comparative evaluation[M]. Robotics & Autonomous Systems. 2011. [116] KWON B C,EYSENBACH B,VERMA J,et al. Clustervision:Visual supervision of unsupervised clustering[J]. IEEE Transactions on Visualization and Computer Graphics,2017,24(1):142-151. [117] LEI T,JIA X,ZHANG Y,et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems,2018,27(9):1753-1766. [118] BENKRID A,BENALLEGUE A,ACHOUR N. Multi-robot coordination for energy-efficient exploration[J]. Journal of Control,Automation and Electrical Systems,2019,30(6):911-920. [119] CHEN Y,HUANG S,ZHAO L,et al. Cramér-rao bounds and optimal design metrics for pose-graph SLAM[J]. IEEE Transactions on Robotics,2021,37(2):627-641. [120] Mei Y,Lu Y H,Lee C S G,et al. Energy-efficient mobile robot exploration[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation,Orlando,USA:IEEE,2006:505-511. [121] DONG S,XU K,ZHOU Q,et al. Multi-robot collaborative dense scene reconstruction[J]. ACM Transactions on Graphics (TOG),2019,38(4):1-16. [122] 周强. 基于最优质量传输理论的多机器人协作扫描系统设计[D]. 济南:山东大学,2020. ZHOU Qiang. Design of optimal mass transport based multi-robot collaborative scanning system[D]. Jinan:Shandong University,2020. [123] HAKER S,ZHU L,TANNENBAUM A,et al. Optimal mass transport for registration and warping[J]. International Journal of Computer Vision,2004,60(3):225-240. [124] KABIR R H,LEE K. Efficient,decentralized,and collaborative multi-robot exploration using optimal transport theory[C]//Proceedings of the 2021 American Control Conference (ACC),New York:IEEE,2021:4203-4208. [125] VILLANI C. Optimal transport:old and new[M]. Springer,2009. [126] NGUYEN T T,NGUYEN N D,NAHAVANDI S. Deep reinforcement learning for multiagent systems:A review of challenges,solutions,and applications[J]. IEEE Transactions on Cybernetics,2020,50(9):3826-3839. [127] VISERAS A,GARCIA R. DeepIG:Multi-robot information gathering with deep reinforcement learning[J]. IEEE Robotics and Automation Letters,2019,4(3):3059-3066. [128] DINNISSEN P,GIVIGI S N,SCHWARTZ H M. Map merging of multi-robot slam using reinforcement learning[C]//Proceedings of the 2012 IEEE International Conference on Systems,Man,and Cybernetics (SMC),San Antonio,USA:IEEE,2012:53-60. [129] WANG Y,LIANG A,GUAN H. Frontier-based multi-robot map exploration using particle swarm optimization[C]//Proceedings of the 2011 IEEE Symposium on Swarm Intelligence,Paris,France:IEEE,2011:1-6. [130] MENDONçA M,PALáCIOS R H,PAPAGEORGIOU E I,et al. Multi-robot exploration using Dynamic Fuzzy Cognitive Maps and Ant Colony Optimization[C]//Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),Glasgow,UK:IEEE,2020:1-8. [131] MENDONçA M,KONDO H S,DE SOUZA L B,et al. Semi-unknown environments exploration inspired by swarm robotics using fuzzy cognitive maps[C]//Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),New Orleans,USA:IEEE,2019:1-8. [132] SOLANAS A,GARCIA M A. Coordinated multi-robot exploration through unsupervised clustering of unknown space[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Sendai,Japan:IEEE,2004:717-721. [133] FRIEDMAN S,PASULA H,FOX D. Voronoi random fields:extracting topological structure of indoor environments via place labeling[C]//Proceedings of the IJCAI,Hyderabad,India:AAAI Press/The MIT Press,2007:2109-2114. [134] SOUSA P,ARAúJO R,NUNES U. Real-time labeling of places using support vector machines[C]//Proceedings of the 2007 IEEE International Symposium on Industrial Electronics,Vigo,Spain:IEEE,2007:2022-2027. [135] RODRIGUEZ-NIEVA J F,SCHEURER M S. Identifying topological order through unsupervised machine learning[J]. Nature Physics,2019,15(8):790-795. [136] LUPERTO M,AMIGONI F. Predicting the global structure of indoor environments:A constructive machine learning approach[J]. Autonomous Robots,2019,43(4):813-835. [137] NIETO-GRANDA C,ROGERS III J G,CHRISTENSEN H I. Coordination strategies for multi-robot exploration and mapping[J]. The International Journal of Robotics Research,2014,33(4):519-533. [138] CHEN Y,HUANG S,FITCH R,et al. On-line 3D active pose-graph SLAM based on key poses using graph topology and sub-maps[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),Montreal,Canada:IEEE,2019:169-175. [139] CARRILLO H,REID I,CASTELLANOS J A. On the comparison of uncertainty criteria for active SLAM[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Automation,Bielefeld:IEEE,2012:2080-2087. [140] RODRíGUEZ-ARéVALO M L,NEIRA J,CASTELLANOS J A. On the importance of uncertainty representation in active SLAM[J]. IEEE Transactions on Robotics,2018,34(3):829-834. [141] CARRILLO H,LATIF Y,RODRIGUEZ-AREVALO M L,et al. On the monotonicity of optimality criteria during exploration in active SLAM[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),Santiago,Chile:IEEE,2015:1476-1483. [142] CHEN Y,HUANG S,FITCH R. Active SLAM for mobile robots with area coverage and obstacle avoidance[J]. IEEE/ASME Transactions on Mechatronics,2020,25(3):1182-1192. [143] TZOUMANIKAS D,LI W,GRIMM M,et al. Fully autonomous micro air vehicle flight and landing on a moving target using visual-inertial estimation and model-predictive control[J]. Journal of Field Robotics,2019,36(1):49-77. [144] INDELMAN V. Cooperative multi-robot belief space planning for autonomous navigation in unknown environments[J]. Autonomous Robots,2018,42(2):353-373. [145] REGEV T,INDELMAN V. Multi-robot decentralized belief space planning in unknown environments via efficient re-evaluation of impacted paths[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Daejeon,Korea:IEEE,2016:5591-5598. [146] PáZMAN A. Foundations of optimum experimental design[M]. Springer,1986. [147] ZHANG Z,SCARAMUZZA D. Beyond point clouds:Fisher information field for active visual localization[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),Montreal,Canada:IEEE,2019:5986-5992. [148] CHARROW B,KUMAR V,MICHAEL N. Approximate representations for multi-robot control policies that maximize mutual information[J]. Autonomous Robots,2014,37(4):383-400. [149] ATANASOV N A,LE NY J,PAPPAS G J. Distributed algorithms for stochastic source seeking with mobile robot networks[J]. Journal of Dynamic Systems,Measurement,and Control,2015,137(3):031011. [150] MEYER F,WYMEERSCH H,FRöHLE M,et al. Distributed estimation with information-seeking control in agent networks[J]. IEEE Journal on Selected Areas in Communications,2015,33(11):2439-2456. [151] ZHANG Z,SCARAMUZZA D. Perception-aware receding horizon navigation for MAVs[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),Brisbane,Australia:IEEE,2018:2534-2541. [152] MORBIDI F,MARIOTTINI G L. Active target tracking and cooperative localization for teams of aerial vehicles[J]. IEEE Transactions on Control Systems Technology,2012,21(5):1694-1707. [153] KOLLAR T,ROY N. Trajectory optimization using reinforcement learning for map exploration[J]. The International Journal of Robotics Research,2008,27(2):175-196. [154] KHOSOUSSI K,HUANG S,DISSANAYAKE G. Novel insights into the impact of graph structure on SLAM[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,Chicago (IL),USA:IEEE,2014:2707-2714. [155] KIM A,EUSTICE R M. Active visual SLAM for robotic area coverage:Theory and experiment[J]. The International Journal of Robotics Research,2015,34(4-5):457-475. [156] MAUROVIĆ I,SEDER M,LENAC K,et al. Path planning for active SLAM based on the D* algorithm with negative edge weights[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,48(8):1321-1331. [157] CHEN L,SHAN Y,TIAN W,et al. A fast and efficient double-tree RRT*-like sampling-based planner applying on mobile robotic systems[J]. IEEE/ASME Transactions on Mechatronics,2018,23(6):2568-2578. [158] CHEN Y,ZHAO L,LEE K M B,et al. Broadcast your weaknesses:cooperative active pose-graph SLAM for multiple robots[J]. IEEE Robotics and Automation Letters,2020,5(2):2200-2207. [159] KANTAROS Y,SCHLOTFELDT B,ATANASOV N,et al. Asymptotically optimal planning for non-myopic multi-robot information gathering[C]//Proceedings of the Robotics:Science and Systems,Freiburg im Breisgau,Germany,2019:22-26. [160] HOLLINGER G A,SUKHATME G S. Sampling-based robotic information gathering algorithms[J]. The International Journal of Robotics Research,2014,33(9):1271-1287. [161] BRY A,ROY N. Rapidly-exploring random belief trees for motion planning under uncertainty[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation,Shanghai,China:IEEE,2011:723-730. [162] CHAVES S M,WALLS J M,GALCERAN E,et al. Risk aversion in belief-space planning under measurement acquisition uncertainty[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany:IEEE,2015:2079-2086. [163] KAVRAKI L E,SVESTKA P,LATOMBE J-C,et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation,1996,12(4):566-580. |
[1] | 关英姿, 刘文旭, 焉宁, 宋春林. 空间多机器人协同运动规划研究[J]. 机械工程学报, 2019, 55(12): 37-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||