[1] CAI Yonglin,XI Guang,WANG Shangjin. Efficient tool path planning for five-axis surface machining with a drum-taper cutter[J]. International Journal of Production Research,2003,41(15):3631-3644. [2] MENG Fanjun,CHEN Zhitong,XU Rufeng,et al. Optimal barrel cutter selection for the CNC machining of blisk[J]. Computer-Aided Design,2014,53:36-45. [3] LUO Ming,YAN Dongqing,WU Baohai,et al. Barrel cutter design and toolpath planning for high-efficiency machining of freeform surface[J]. The International Journal of Advanced Manufacturing Technology,2016,85(9-12):2495-2503. [4] ZHU Yu,CHEN Zhitong,ZHANG Yun,et al. Tool positioning method for achieving double-point contact in flank milling of a concave surface with a barrel cutter[J]. The International Journal of Advanced Manufacturing Technology,2017,93(5-8):1791-1807. [5] WANG Jing,LUO Ming,ZHANG Dinghua. A global space-based approach for wide strip flank milling of freeform surface with a barrel cutter[J]. International Journal of Computer Integrated Manufacturing,2019,32(1):92-104. [6] 魏兆成,薛帅,李宏坤,等. 整体叶盘球头鼓锥形铣刀五轴加工技术[J]. 工具技术,2018,52(12):43-49. WEI Zhaocheng,XUE Shuai,LI Hongkun,et al. Five axis machining technology of ball head drum milling cutter for integral blade[J]. Tool Engineering,2018,52(12):43-49 [7] XU Rufeng,LI Xun,ZHENG Guangming,et al. A radius compensation method of barrel tool based on macro variables in five-axis flank machining of sculptured surfaces[J]. International Journal of Production Research,2020,58(8):2335-2351. [8] LU Yaoan,DING Ye,WANG Chengyong,et al. Tool path generation for five-axis machining of blisks with barrel cutters[J]. International Journal of Production Research,2019,57(5):1300-1314. [9] 徐金亭,牛金波,陈满森,等. 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报,2021,42:1-27. XU Jinting,NIU Jinbo,CHEN Mansen,et al. Research progress in multi axis CNC machining of precision complex curved parts[J]. Acta Aeronautica et Astronautica Sinica,2021,42:1-27. [10] LU Yaoan,DING Ye,ZHU Limin. Smooth tool path optimization for flank milling based on the gradient-based differential evolution method[J]. Journal of Manufacturing Science and Engineering,2016,138(8):081009. [11] CASTAGNETTI C,DUC E,RAY P. The domain of admissible orientation concept:A new method for five-axis tool path optimisation[J]. Computer-Aided Design,2008,40(9):938-950. [12] WANG Yingpeng,XU Jinting,SUN Yuwen. Tool orientation adjustment for improving the kinematics performance of 5-axis ball-end machining via CPM method[J]. Robotics and Computer-Integrated Manufacturing,2021,68:102070. [13] PLAKHOTNIK D,LAUWERS B. Graph-based optimization of five-axis machine tool movements by varying tool orientation[J]. The International Journal of Advanced Manufacturing Technology,2014,74(1-4):307-318. [14] 刘红军,曹宁江,赵吉宾. 基于有向图的刀轴矢量优化研究[J]. 中国机械工程,2015,26(19):2629-2632. LIU Hongjun,CAO Ningjiang,ZHAO Jibin. Research on tool axis vector optimization based on directed graph[J]. China Mechanical Engineering,2015,26(19):2629-2632. [15] LU Yaoan,WANG Chengyong,SUI Jianbo,et al. Smoothing rotary axes movements for ball-end milling based on the gradient-based DE method[J]. Journal of Manufacturing Science and Engineering,2018,140(12):121008. [16] 王晶,张定华,罗明,等. 复杂曲面零件五轴加工刀轴整体优化方法[J]. 航空学报,2013,34(6):1452-1462. WANG Jing,ZHANG Dinghua,LUO Ming,et al. A global tool orientation optimization method for five-axis CNC machining of sculptured surfaces[J]. Acta Aeronautica et Astronautica Sinica,2013,34(6):1452-1462. [17] PIEGL L,TILLER W. The NURBS book[M]. Berlin:Springer Verlag,1997. [18] TANG T D. Algorithms for collision detection and avoidance for five-axis NC machining:A state of the art review[J]. Computer-Aided Design,2014,51:1-17. [19] BEHLEY J,STEINHAGE V,CREMERS A B. Efficient radius neighbor search in three-dimensional point clouds[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). 2015:3625-3630. [20] 丁汉,朱利民. 复杂曲面数字化制造的几何学理论和方法[M]. 北京:科学出版社,2011. DING Han,ZHU Limin. Geometric theory and method of complex surface digital manufacturing[M]. Beijing:Science Press,2011. [21] GAO J,PASHKEVICH A,CARO S. Optimization of the robot and positioner motion in a redundant fiber placement workcell[J]. Mechanism and Machine Theory,2017,114:170-189. |