• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (1): 190-200.doi: 10.3901/JME.2022.01.190

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于元学习的多可信度深度神经网络代理模型

张立1, 陈江涛2, 熊芬芬1, 任成坤1, 李超1   

  1. 1. 北京理工大学宇航学院 北京 100081;
    2. 中国空气动力研究与发展中心 绵阳 621000
  • 收稿日期:2021-02-02 修回日期:2021-07-06 出版日期:2022-01-05 发布日期:2022-03-19
  • 通讯作者: 熊芬芬(通信作者),女,1982年出生,博士,副教授。主要研究领域为飞行器多学科优化设计、不确定性量化、飞行器轨迹优化和制导。E-mail:fenfenx@bit.edu.cn
  • 作者简介:张立,男,1997年出生。主要研究方向为不确定性量化。E-mail:18811367828@163.com
  • 基金资助:
    国家数值风洞工程项目(NNW2020ZT7-B31)和科学挑战专题(TZ2019001)资助项目。

Meta-Learning Based Multi-Fidelity Deep Neural Networks Metamodel Method

ZHANG Li1, CHEN Jiangtao2, XIONG Fenfen1, REN Chengkun1, LI Chao1   

  1. 1. School of Astronautics, Beijing Institute of Technology, Beijing 100081;
    2. China Aerodynamic Research and Development Center, Mianyang 621000
  • Received:2021-02-02 Revised:2021-07-06 Online:2022-01-05 Published:2022-03-19

摘要: 为了降低计算量,多可信度代理模型技术通过融合不同精度和计算量的分析模型构建高精度分析模型的代理模型,在基于仿真的工程优化中得到广泛应用。现有的多可信度建模方法在面对高维问题时往往仍需要大量高精度样本点,计算量很大,且大都基于高斯随机过程理论,超参数估计时长随着问题维数和非线性程度的增加明显增长且不够稳健。为此,充分利用深度神经网络在高维信息提取和近似方面的巨大潜能,以及元学习理论在小样本学习领域的优势,提出一种基于元学习的多可信度深度神经网络(Meta-learning based multi-fidelity deep neural networks,MLMF-DNN)代理模型方法。通过若干数学算例和NACA0012翼型稳健优化问题的应用,表明提出的MLMF-DNN方法相比于经典的Co-Kriging方法,在预测精度和训练时长上均有明显改善,对于高维问题优势更明显。

关键词: 深度神经网络, 元学习, 多可信度, 代理模型, 稳健优化

Abstract: To reduce the computational cost, the multi-fidelity metamodel methods that fusion analysis models with different computational cost and accuracy have been widely used in simulation-based engineering optimization. The existing multi-fidelity modeling methods still need a large number of high-fidelity and computationally expensive sample points especially for high-dimensional problems. Meanwhile, most of them are based on the Gaussian random process theory, and thus the time cost by hyper-parameter estimation increases significantly with the increase of dimension and nonlinearity of problems and the robustness is low. To address these issues, makes full use of the great potential of deep neural networks in high-dimensional information extraction and approximation, as well as the advantages of meta-learning theory in the field of small-sample learning, and develops a meta-learning based multi-fidelity deep neural network surrogate model (MLMF-DNN) method. Through several mathematical examples and the application of NACA0012 airfoil robust optimization problem, it is shown that the proposed MLMF-DNN approach is significantly improved in prediction accuracy and training time cost compared with the classical Co-Kriging method, especially for high-dimensional problems.

Key words: deep neural networks, meta-learning, multi-fidelity, surrogate model, robust optimization

中图分类号: