[1] FILATOV G. Optimum designing of the bearing structures of bucket wheel excavators. three-mass model[J]. Journal of Emerging Technology and Advanced Engineering,2017,7(10):378-383. [2] DORN W,GOMORY R,GREENBERG H. Automatic design of optimal structures[J]. Design Mechaniuque,1964,3(1):25-52. [3] RUSIŃSKI E, MOCZKO P, KACZYŃSKI P. Structural modifications of excavator's bucket wheel by the use of numerical methods[C]//Solid State Phenomena. Trans Tech Publications,2010,165:330-335. [4] SHANG P,HU Y Z,HE L H,et al. The modal analysis of the main steel structure of bucket wheel stacker reclaimer[C]//Advanced Materials Research. Trans Tech Publications,2013,690:3121-3124. [5] 金华英.斗轮堆取料机前臂架结构优化与设计分析[J]. 内燃机与配件,2018(23):205-206.JIN Huaying. Structural optimization and design analysis of forearm of bucket wheel stacker reclaimer[J]. Internal Combustion Engine & Parts,2018,690:3121-2124. [6] YUAN Y L, LÜ L Y, WANG S B,et al. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Frontiers of Mechanical Engineering,2020,15(3):406-416. [7] YUAN Y L, LÜ L Y, WANG X B,et al. Optimization of a frame structure using the coulomb force search strategy-based dragonfly algorithm[J]. Engineering Optimization,2020,52(6):915-931. [8] YUAN Y L,SONG X G,SUN W,et al. Multidisciplinary design optimization of the belt drive system considering both structure and vibration characteristics based on improved genetic algorithm[J]. AIP Advances,2018,8 (5):055115. [9] ZHAO M P. GA-based optimal design of derricking balance mechanism of bucket wheel stacker reclaimer[C]//Advanced Materials Research. Trans Tech Publications,2012,562:672-675. [10] 钱云芳,蔡岗础. 大型斗轮堆取料机拉杆的受力分析与优化[J]. 港口装卸,2018(6):6-10.QIAN Yunfang,CAI Gangchu. Stress analysis and optimization of drawbar of large bucket wheel stacker reclaimer[J]. Port Operation,2018(6):6-10. [11] 王九生,王海斌. DQLK1000/1200.30型斗轮堆取料机回转机构改型优化[J]. 酒钢科技,2019(3):53-56.WANG Jiusheng,WANG Haibin. Modification and optimization of slewing mechanism for DQLK 1000/1200.30 bucket wheel stacker reclaim[J]. JISCO Technology,2019(3):53-56. [12] 吴奋敬. 螺旋卸船机相对旋转式取料装置取料机理及仿真研究[D]. 武汉:武汉理工大学,2017.WU Feijing. Research of reclaiming mechanism and simulation of relatively-rotating inlet device of screw unloader[D]. Wuhan:Wuhan University of Technology,2017. [13] LIU S Y,LI J,HE H. Topological optimization of the main girder web based on ESO[J]. Journal of Engineering Design,2011,18(3):174-177.[14] SUN W,PENG X,DOU J,et al. Surrogate-based weight reduction optimization of forearm of bucket-wheel stacker reclaimer[J]. Structural and Multidisciplinary Optimization,2020,61(3):1287-1301. [15] 龚建民. 悬臂斗轮堆取料机总体设计及机构分析与优化设计[J]. 水利水电施工,2016,157(4):60-67.GONG Jianmin. Overall design and mechanism analysis and optimization design of cantilever bucket wheel stacker and reclaimer[J]. Water Conservancy and Hydropower Construction,2016,157(4):60-67. [16] 李军. 基于散体力学的堆取料机料斗结构优化设计[D]. 天津:河北工业大学,2018.LI Jun. Optimization design of hopper structure of heap reclaimer based on bulk mechanics[D]. Tianjin:Hebei University of Technology. 2018. [17] WANG X B,SUN W,LI E Y,et al. Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning[J]. Structural and Multidisciplinary Optimization,2018,58(5):1-19. [18] MIRJALILI S. Dragonfly algorithm:a new meta-heuristic optimization technique for solving single-objective,discrete,and multi-objective problems[J]. Neural Computing and Applications,2016,27(4):1053-1073. [19] YANG X S. Nature-inspired metaheuristic algorithms[M]. Beckington:Luniver Press,2008. [20] PAVLYUKEVICH I. Levy flights,non-local search and simulated annealing[J]. Mathematics,2007,226(2):1830-1844. [21] 徐遥,王士同. 引力搜索算法的改进[J]. 计算机工程与应用,2011,47(35):188-192.XU Yao,WANG Shitong. Enhanced version of graritaflonal search algorithm:weighted GSA[J]. Computer Engineering and Applications.2011,47(35):188-192.[22] 刘俊彤,王可人,冯辉,等. 一种基于认知引擎的t分布变异萤火虫算法[J]. 数据采集与处理,2015(4):909-914.LIU Juntong,Wang Keren,FENG Hui,et al. GSO algorithm with t-distribution mutation for cognitive engine[J]. Journal of Data Acquisition and Processing,2015 (4):909-914. [23] MIRJALILI S. Moth-flame optimization algorithm:A novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems,2015,89:228-249. [24] LI Z,ZHOU Y,ZHANG S,et al. Lévy-flight moth-flame algorithm for function optimization and engineering design problems[J]. Mathematical Problems in Engineering,2016,2016(8):1-22. [25] IRUTHAYARAJAN M W,BASKAR S. Covariance matrix adaptation evolution strategy based design of centralized PID controller[J]. Expert Systems with Applications,2010,37(8):5775-5781. [26] SONG J M,LI S P. Elite opposition learning and exponential function steps-based dragonfly algorithm for global optimization[C]//2017 IEEE International Conference on Information and Automation (ICIA). IEEE,2017,1178-1183. [27] 徐建国. 轴流泵叶片应力与模态分析[D]. 扬州:扬州大学,2008.XU Jianguo. Stress and modal analysis of axial-flow pump blades[D]. Yangzhou:Yangzhou University,2008. [28] COELLO,C A. An updated survey of GA-based multiobjective optimization techniques[J]. Acm Computing Surveys,2000,32(2):109-143. [29] YAPO P O,GUPTA H V,SOROOSHIAN S. Multi-objective global optimization for hydrologic models[J]. Journal of Hydrology,1998,204(1-4):83-97. |