[1] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [2] PAN Zuozhou,MENG Zong,CHEN Zijun,et al. A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings[J]. Mechanical Systems and Signal Processing,2020,144:106899. [3] YU Gang, LIN Tianran. Second-order transient-extracting transform for the analysis of impulsive-like signals[J]. Mechanical Systems and Signal Processing,2021,147:107069. [4] 孟宗,石颖,潘作舟,等. 自适应分块前向后向分段正交匹配追踪在重构滚动轴承故障信号中应用[J]. 机械工程学报,2020,56(9):91-101. MENG Zong,SHI Ying,PAN Zuozhou,et al. Fault diagnosis of rolling bearing based on adaptive block forward and backward stagewise orthogonal matching pursuit algorithm[J]. Journal of Mechanical Engineering,2020,56(9):91-101. [5] HE Miao,HE D. A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals[J]. Neurocomputing,2020,396:542-555. [6] 沈长青,汤盛浩,江星星,等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报,2019,55(7):81-88. SHEN Changqing,TANG Shenghao,JIANG Xingxing,et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate[J]. Journal of Mechanical Engineering,2019,55(7):81-88. [7] 熊鹏,汤宝平,邓蕾,等. 基于动态加权密集连接卷积网络的变转速行星齿轮箱故障诊断[J]. 机械工程学报,2019,55(7):52-57. XIONG Peng,TANG Baoping,DENG Lei,et al. Fault diagnosis for planetary gearbox by dynamically weighted densely connected convolutional networks[J]. Journal of Mechanical Engineering,2019,55(07):52-57. [8] 王奉涛,刘晓飞,敦泊森,等. 基于萤火虫优化的核自动编码器在中介轴承故障诊断中的应用[J]. 机械工程学报,2019,55(7):58-64. WANG Fengtao,LIU Xiaofei,DUN Bosen,et al. Application of kernel auto-encoder based on firefly optimization in intershaft bearing fault diagnosis[J]. Journal of Mechanical Engineering,2019, 55(7):58-64. [9] 张永清,卢荣钊,乔少杰,等. 一种基于样本空间的类别不平衡数据采样方法[J/OL].自动化学报:[2021-07-01]. https://doi.org/10.16383/j.aas.c200034. ZHANG Yongqing,LU Rongzhao,QIAO Shaojie,et al. A sampling method of imbalanced data based on sample space[J/OL]. Acta Automatica Sinica:[2021-07-01]. https://doi.org/10.16383/j.aas.c200034. [10] LI Junnan,ZHU Qingsheng,WU Quanwang,et al. A novel oversampling technique for class-imbalanced learning based on SMOTE and natural neighbors[J]. Information Sciences,2021,565:438-455. [11] ÖCAL A,ÖZBAKIR L. Supervised deep convolutional generative adversarial networks[J]. Neurocomputing,2021,449:389-398. [12] 李想,王鹏,刘洋,等. 考虑类别不平衡的海量负荷用电模式辨识方法[J]. 中国电机工程学报,2020, 40(1):128-137+380. LI Xiang,WANG Peng,LIU Yang,et al. Massive load pattern identification method considering class imbalance[J]. Proceedings of The Chinese Society for Electrical Engineering,2020,40(1):128-137+380. [13] 董勋,郭亮,高宏力,等. 代价敏感卷积神经网络:一种机械故障数据不平衡分类方法[J]. 仪器仪表学报,2019,40(12):205-213. DONG Xun,GUO Liang,GAO Hongli,et al. Cost sensitive convolutional neural network:A classification method for imbalanced data of mechanical fault[J]. Chinese Journal of Scientific Instrument,2019,40(12):205-213. [14] ZHOU Funa,YANG Shuai,FUJITA H,et al. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data[J]. Knowledge- Based Systems,2020,187:104837. [15] SOLTANZADEH P,HASHEMZADEH M. RCSMOTE:range-controlled synthetic minority over-sampling technique for handling the class imbalance problem[J]. Information Sciences,2021,542:92-111. [16] RICHHARIYA B,TANVEER M. A reduced universum twin support vector machine for class imbalance learning[J]. Pattern Recognition,2020,102:107150. [17] QIAN Weiwei,LI Shunming. A novel class imbalance-robust network for bearing fault diagnosis utilizing raw vibration signals[J]. Measurement,2020,156:107567. [18] 胡茑庆,陈徽鹏,程哲,等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报,2019,55(7):9-18. HU Niaoqing,CHEN Huipeng,CHENG Zhe,et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering,2019,55(7):9-18. [19] LI Zhi,WANG Shuihua,FAN Ruirui,et al. Teeth category classification via seven-layer deep convolutional neural network with max pooling and global average pooling[J]. International Journal of Imaging Systems and Technology,2019,29(4):577-583. [20] 史加荣,王丹,尚凡华,等. 随机梯度下降算法研究进展[J/OL]. 自动化学报:[2021-07-01]. https://doi.org/10.16383/j.aas.c190260. SHI Jiarong,WANG Dan,SHANG Fanhua,et al. Research advances of stochastic gradient descent algorithms[J/OL]. Acta Automatica Sinica:[2021-07-01]. https://doi.org/10.16383/j.aas.c190260. [21] 黄鑫,陈仁祥,杨星,等. 基于深度卷积神经网络与WPT-PWVD的轴承故障智能诊断[J]. 振动与冲击,2020,39(16):236-243. HUANG Xin,CHEN Renxiang,YANG Xing,et al. A bearing fault intelligent diagnosis method based on deep convolution neural network and WPT-PWVD[J]. Journal of Vibration and Shock,2020,39(16):236-243. |