• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (23): 106-115.doi: 10.3901/JME.2021.23.106

• 机械动力学 • 上一篇    下一篇

扫码分享

基于二次数据增强和深度卷积的滚动轴承故障诊断研究

孟宗, 关阳, 潘作舟, 孙登云, 樊凤杰, 曹利宵   

  1. 燕山大学河北省测试计量技术及仪器重点实验室 秦皇岛 066004
  • 收稿日期:2020-10-20 修回日期:2021-05-11 出版日期:2021-12-05 发布日期:2022-02-28
  • 通讯作者: 孟宗(通信作者),男,1977年出生,博士,教授,博士研究生导师。主要研究方向为机械动力学分析、机械设备状态监测与故障诊断等。E-mail:mzysu@ysu.edu.cn
  • 作者简介:关阳,女,1998年出生,硕士研究生。主要研究方向为深度学习与故障诊断,多源信号处理。E-mail:309154795@qq.com;潘作舟,男,1994年出生,博士研究生。主要研究方向为旋转机械故障信号分析与处理,旋转机械寿命预测,压缩感知信号重构。E-mail:panzzysu@163.com;孙登云,男,1994年出生,博士研究生。主要研究方向为旋转机械故障诊断,深度迁移学习。E-mail:531128633@qq.com;樊凤杰,女,1977年出生,博士,副教授。主要研究方向为信号分析与处理。E-mail:ffj@ysu.edu.cn;曹利宵,女,1991年出生,博士,讲师。主要研究方向为风电机组状态监测方法。E-mail:caolixiao@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(52075470)、河北省自然科学基金(E2019203448)、中央引导地方科技发展资金(206Z4301G)和河北省研究生创新(CXZZSS2021067)资助项目。

Fault Diagnosis of Rolling Bearing Based on Secondary Data Enhancement and Deep Convolutional Network

MENG Zong, GUAN Yang, PAN Zuozhou, SUN Dengyun, FAN Fengjie, CAO Lixiao   

  1. Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Yanshan University, Qinhuangdao 066004
  • Received:2020-10-20 Revised:2021-05-11 Online:2021-12-05 Published:2022-02-28

摘要: 滚动轴承是旋转机械的重要组成部件之一,及时准确地故障诊断在现代工业系统的可靠性和安全性中起着重要作用。然而现有故障诊断方法多是面向平衡数据集进行研究。针对实际工况下,正常样本丰富、故障样本少的类别失衡情形所导致的轴承故障诊断能力和泛化能力较差等问题,提出一种基于二次数据增强和深度卷积的故障诊断模型。该方法首先构造不同的数据集,研究类别不平衡情形对故障诊断性能的影响;其次,基于重采样方法将数据集重构为平衡数据集,并对其进行二次数据增强,提高样本点的利用率;然后,利用改进的深度一维卷积网络提取信号特征,对滚动轴承故障信息进行充分表征;最后结合集成学习投票分类思想进行故障分类与诊断。试验通过t-SNE及多种指标进行评估,同时与其他方法进行对比,结果表明,所提模型具有更高的诊断精度与诊断速度,鲁棒性与通用性较好,能够很好地适用于类不平衡情形下的滚动轴承故障诊断。

关键词: 故障诊断, 类不平衡, 重采样, 数据增强, 投票分类算法

Abstract: Rolling bearing is one of the main components of rotating machinery, timely and accurate fault diagnosis plays an important role in the reliability and safety of modern industrial systems. However, most of the existing fault diagnosis methods are based on balanced datasets. Aiming at the problem of poor fault diagnosis ability and generalization ability, which are caused by class-imbalance of bearing data. A fault diagnosis model based on secondary data enhancement and deep convolution is proposed. In the first place, different datasets are constructed to study the impact of class-imbalance on the performance of fault diagnosis. Secondly, the datasets are reconstructed into balanced datasets based on resampling, and data enhancement are performed on the reconstructed datasets again, which can improve the utilization of sample points. Moreover, the deep one-dimensional convolutional network(1-DCNN) is used to extract the signal features and fully characterize the fault information of rolling bearing. Finally, the fault diagnosis is performed through the ensemble learning voting method. The experiments use t-SNE and a variety of indicators to evaluate results. At the same time, it is compared with other methods for verification. The results show that the proposed model has higher diagnostic accuracy and diagnostic speed, which has good robustness and versatility, and can be well applied to fault diagnosis of rolling bearing under class-imbalance scenes.

Key words: fault diagnosis, class-imbalance, resample, data enhancement, voting classification algorithm

中图分类号: