[1] YEH Jienwei, CHEN Swekai, LIN Sujien, et al. Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303. [2] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A, 2004, 375-377:213-218. [3] GALI A, GEORGE E P. Tensile properties of high-and medium-entropy alloys[J]. Intermetallics, 2013(39):74-78. [4] HUANG Shuo, LI Wei, LU Song, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy[J]. Scripta Materialia, 2015(108):44-47. [5] LIU S F, WU Y, WANG H T, et al. Stacking fault energy of face-centered-cubic high entropy alloys[J]. Intermetallics, 2018(93):269-273. [6] ZADDACH A J, NIU C, KOCH C C, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy[J]. JOM, 2013, 65(12):1780-1789. [7] LAPLANCHE G, KOSTKA A, HORST O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy[J]. Acta Materialia, 2016(118):152-163. [8] 贺飞. 锻造和乳制对CoCrFeNiMn五元高熵合金组织结构和力学性能的影响[D]. 大连:大连理工大学, 2016. HE Fei. The influences of forging and rolling on stuctures and mechanical properties of CoCrFeNiMn[D]. Dalian:Dalian University of Tectmology, 2016. [9] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201):1153-1158. [10] 陈陈旭. 高熵合金微观变形机理[D]. 杭州:浙江大学, 2018. CHEN Chenxu. Deformation mechanism of high-entropy alloys[D]. Hangzhou:Zhejiang University, 2018. [11] 梁山. 剧烈塑性变形对FeCoNiCrMn高熵合金微观组织及力学性能的影响[D]. 西安:长安大学, 2019. LIANG Shan. Effect of severe plastic deformation on microstructure and mechanical properties of FeCoNiCrMn high-entropy alloy[D]. Xi'an:Chang'an University, 2019. [12] WU Z, BEI H, PHARR G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia, 2014(81):428-441. [13] HE J Y, ZHU C, ZHOU D Q, et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures[J]. Intermetallics, 2014(55):9-14. [14] THURSTON K V S, GLUDOVATZ B, HOHENWARTER A, et al. Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi[J]. Intermetallics, 2017(88):65-72. [15] JANG M J, AHN D H, MOON J, et al. Constitutive modeling of deformation behavior of high-entropy alloys with face-centered cubic crystal structure[J]. Materials Research Letters, 2017, 5(5):350-356. [16] LU Xiaochong, ZHAO Jianfeng, YU Chao, et al. Cyclic plasticity of an interstitial high-entropy alloy:Experiments, crystal plasticity modeling, and simulations[J]. Journal of the Mechanics and Physics of Solids, 2020(142):103971. [17] PEIRCE D, ASARO R J, NEEDLEMAN A. An analysis of nonuniform and localized deformation in ductile single crystals[J]. Acta Metallurgica, 1982, 30(6):1087-1119. [18] RICE J R. Inelastic constitutive relations for solids:An internal-variable theory and its application to metal plasticity[J]. Journal of the Mechanics and Physics of Solids, 1971, 19(6):433-455. [19] ABAQUS 6.14 analysis user's manual[M]. Paris:Dassault System Inc. Waltham, 2014. [20] LIM H, BATTAILE C C, BISHOP J E, et al. Investigating mesh sensitivity and polycrystalline RVEs in crystal plasticity finite element simulations[J]. International Journal of Plasticity, 2019(121):101-115. [21] QUEY R, DAWSON P R, BARBE F. Large-scale 3D random polycrystals for the finite element method:Generation, meshing and remeshing[J]. Computer Methods in Applied Mechanics & Engineering, 2011, 200(17-20):1729-1745. [22] FANG Qihong, CHEN Yang, LI Jia, et al. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys[J]. International Journal of Plasticity, 2019(114):161-173. |