[1] JURF R A, PIPES R B. Interlaminar fracture of composite materials[J]. Journal of Composite Materials, 1982, 16(5):386-394. [2] 新野正之, 平井敏雄, 渡边龙三. 倾斜机能材料-宇宙机用超耐热材料应用[J]. 日本复合材料学会志, 1987, 13(6):257-264. SHINNO M, HIRAI T, WATANABE R. Tilting functional materials-applications of super heat-resistant materials for space machines[J]. Journal of the Society of Composite Materials of Japan, 1987, 13(6):257-264. [3] BOHIDAR S K, SHARMA R, MISHRA P R. Functionally graded materials:A critical review[J]. International Journal of Research, 2014, 1(4):289-301. [4] KNOPPERS G E, GUNNINK J W, VAN Den HOUT J, et al. The reality of functionally graded material products[C/CD]//Intelligent Production Machines and Systems-First I*PROMS Virtual Conference:Proceedings, Elsevier, 2005:467. [5] GROVES J F, WADLEY H N G. Functionally graded materials synthesis via low vacuum directed vapor deposition[J]. Composites Part B:Engineering, 1997, 28(1-2):57-69. [6] SHANMUGAVEL P, BHASKAR G B, CHANDRASEKARAN M, et al. An overview of fracture analysis in functionally graded materials[J]. European Journal of Scientific Research, 2012, 68(3):412-439. [7] NODA N. Thermal stresses in functionally graded materials[J]. Journal of Thermal Stresses, 1999, 22(4-5):477-512. [8] GUO N, LEU M C. Additive manufacturing:Technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3):215-243. [9] CHEN L, HE Y, YANG Y, et al. The research status and development trend of additive manufacturing technology[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):3651-3660. [10] GIBSON I, ROSEN D, STUCKER B. Development of additive manufacturing technology[M]//Additive Manufacturing Technologies. Springer, New York, 2015:19-42. [11] 刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20):128-151, 159. LIU Wei, LI Neng, ZHOU Biao, et al. Progress in additive manufacturing on complex structures and highperformance materials[J]. Journal of Mechanical Engineering, 2019, 55(20):128-151, 159. [12] 张永忠, 刘彦涛, 曹晔. 激光快速成形梯度复合结构的研究进展[J]. 航空制造技术, 2015(10):44-47, 55. ZHANG Yongzhong, LIU Yantao, CAO Ye. Research progress on gradient composite structures fabricated by laser melting deposition process[J]. Aviation Manufacturing Technology, 2015(10):44-47, 55. [13] LOH G H, PEI E, HARRISON D, et al. An overview of functionally graded additive manufacturing[J]. Additive Manufacturing, 2018, 23:34-44. [14] SALEH B, JIANG J, FATHI R, et al. 30 years of functionally graded materials:An overview of manufacturing methods, applications and future challenges[J]. Composites Part B Engineering, 2020, 201:108376. [15] KUANG X, WU J, CHEN K, et al. Grayscale digital light processing 3D printing for highly functionally graded materials[J]. Science Advances, 2019, 5(5):5790. [16] NIKBAKHT S, KAMARIAN S, SHAKERI M. A review on optimization of composite structures Part II:Functionally graded materials[J]. Composite Structures, 2019, 214:83-102. [17] ZHANG C, CHEN F, HUANG Z, et al. Additive manufacturing of functionally graded materials:Areview[J]. Materials Science and Engineering:A, 2019, 764:138209. [18] REICHARDT A, SHAPIRO A A, OTIS R, et al. Advances in additive manufacturing of metal-based functionally graded materials[J]. International Materials Reviews, 2020:1-29. [19] GIBSON I, ROSEN D W, STUCKER B. Additive manufacturing technologies[M]. New York:Springer, 2014. [20] 宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14):29-39. SONG Jianli, LI Yongtang, DENG Qilin, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14):29-39. [21] SANTO L. Laser cladding of metals:A review[J]. International Journal of Surface Science and Engineering, 2008, 2(5):327-336. [22] NAVAS C, CONDE A, FERNANDEZ B J, et al. Laser coatings to improve wear resistance of mould steel[J]. Surface and Coatings Technology, 2005, 194(1):136-142. [23] FENG J, FERREIRA M G S, VILAR R. Laser cladding of Ni-Cr/Al2O3 composite coatings on AISI 304 stainless steel[J]. Surface and Coatings Technology, 1997, 88(1-3):212-218. [24] DE OLIVEIRA U, OCELIK V, DE HOSSON J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface and Coatings Technology, 2005, 197(2-3):127-136. [25] GEDDA H. Laser surface cladding:A literature survey[M]. Luleå:LuleåUniversity of Technology, 2000. [26] CHENG F T, LO K H, MAN H C. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced Ni Ti wire[J]. Materials Science and Engineering:A, 2004, 380(1-2):20-29. [27] BOBBIO L D, OTIS R A, BORGONIA J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar:Experimental characterization and thermodynamic calculations[J]. Acta Materialia, 2017, 127:133-142. [28] BREMEN S, MEINERS W, DIATLOV A. Selective laser melting:A manufacturing technology for the future[J]. Laser Technik Journal, 2012, 9(2):33-38. [29] YAP C Y, CHUA C K, DONG Z L, et al. Review of selective laser melting:Materials and applications[J]. Applied physics reviews, 2015, 2(4):041101. [30] WEI C, LI L, ZHANG X, et al. 3D printing of multiple metallic materials via modified selective laser melting[J]. CIRP Annals, 2018, 67(1):245-248. [31] KRUTH J P, FROYEN L, VAN VAERENBERGH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1-3):616-622. [32] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312. [33] LOUVIS E, FOX P, SUTCLIFFE C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2):275-284. [34] VANDENBROUCKE B, KRUTH J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4):196-203. [35] HAN C, LI Y, WANG Q, et al. Titanium/hydroxyapatite(Ti/HA) gradient materials with quasi-continuous ratios fabricated by SLM:Material interface and fracture toughness[J]. Materials&Design, 2018, 141:256-266. [36] KHORASANI A M, GIBSON I, GOLDBERG M, et al. A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup[J]. Materials&Design, 2016, 103:348-355. [37] OLIVEIRA N T C, ALEIXO G, CARAM R, et al. Development of Ti-Mo alloys for biomedical applications:Microstructure and electrochemical characterization[J]. Materials Science and Engineering:A, 2007, 452:727-731. [38] OLIVEIRA N T C, GUASTALDI A C. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications[J]. Acta Biomaterialia, 2009, 5(1):399-405. [39] ALMEIDA A, GUPTA D, LOABLE C, et al. Laser-assisted synthesis of Ti-Mo alloys for biomedical applications[J]. Materials Science and Engineering:C, 2012, 32(5):1190-1195. [40] RUZIC J, EMURA S, JI X, et al. Mo segregation and distribution in Ti-Mo alloy investigated using nanoindentation[J]. Materials Science and Engineering:A, 2018, 718:48-55. [41] VRANCKEN B, DADBAKHSH S, MERTENS R, et al. Selective laser melting process optimization of Ti-Mo-Ti Cmetal matrix composites[J]. CIRP Annals, 2019, 68(1):221-224. [42] HOFMANN D C, ROBERTS S, OTIS R, et al. Developing gradient metal alloys through radial deposition additive manufacturing[J]. Scientific Reports, 2014, 4:5357. [43] GAO Y, TSUMURA T, NAKATA K. Dissimilar welding of titanium alloys to steels[J]. Transactions of JWRI, 2012, 41(2):7-12. [44] KRISHNA B V, XUE W, BOSE S, et al. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures[J]. Acta Biomaterialia, 2008, 4(3):697-706. [45] SCHNEIDER-MAUNOURY C, WEISS L, ACQUIER P, et al. Functionally graded Ti6Al4V-Mo alloy manufactured with DED-CLAD®process[J]. Additive Manufacturing, 2017, 17:55-66. [46] REICHARDT A, DILLON R P, BORGONIA J P, et al. Development and characterization of Ti-6Al-4V to 304Lstainless steel gradient components fabricated with laser deposition additive manufacturing[J]. Materials&Design, 2016, 104:404-413. [47] QU H P, LI P, ZHANG S Q, et al. Microstructure and mechanical property of laser melting deposition (LMD)Ti/Ti Al structural gradient material[J]. Materials&Design, 2010, 31(1):574-582. [48] DUTTA M J, MANNA I, KUMAR A, et al. Direct laser cladding of Co on Ti-6Al-4V with a compositionally graded interface[J]. Journal of Materials Processing Technology, 2009, 209(5):2237-2243. [49] 王科. 航空发动机用整体叶盘制造技术[J]. 新材料产业, 2017(5):35-38. WANG Ke. Manufacturing technology of aeroengine integral blisk[J]. New Materials Industry, 2017(5):35-38. [50] 蔡建明, 李娟, 田丰, 等. 先进航空发动机用高温钛合金双性能整体叶盘的制造[J]. 航空制造技术, 2019, 62(19):34-40. CAI Jianming, LI Juan, TIAN Feng, et al. Manufacture of high performance titanium alloy dual-performance monolithic impeller for advanced aero engine[J]. Aviation Manufacturing Technology, 2019, 62(19):34-40. [51] 黄弋力, 朱平, 孟氢钡, 等. 合金激光增材制造用于2Cr13叶片的修复技术研究[J]. 电焊机, 2019(11):21. HUANG Yili, ZHU Ping, MENG Qingbei, et al. Research on repair technology of 2Cr13 blade by stellite alloy laser additive manufacturer[J]. Welding Machine, 2019(11):21. [52] WEIGL M, SCHMIDT M. Influence of the feed rate and the lateral beam displacement on the joining quality of laser-welded copper-stainless steel connections[J]. Physics Procedia, 2010, 5:53-59. [53] 杨海欧, 林鑫, 陈静, 等. 利用激光快速成形技术制造高温合金-不锈钢梯度材料[J]. 中国激光, 2005, 32(4):567-570. YANG Haiou, LIN Xin, CHEN Jing, et al. Functionally gradient materials prepared with laser rapid forming[J]. China Laser, 2005, 32(4):567-570. [54] CARROLL B E, OTIS R A, BORGONIA J P, et al. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition:Characterization and thermodynamic modeling[J]. Acta Materialia, 2016, 108:46-54. [55] YAKOVLEV A, TRUNOVA E, GREVEY D, et al. Laser-assisted direct manufacturing of functionally graded3D objects[J]. Surface and Coatings Technology, 2005, 190(1):15-24. [56] CHEN J, YANG Y, SONG C, et al. Interfacial microstructure and mechanical properties of316L/Cu Sn10 multi-material bimetallic structure fabricated by selective laser melting[J]. Materials Science and Engineering:A, 2019, 752:75-85. [57] TOHGO K, IIZUKA M, ARAKI H, et al. Influence of microstructure on fracture toughness distribution in ceramic-metal functionally graded materials[J]. Engineering Fracture Mechanics, 2008, 75(15):4529-4541. [58] 焦丽娟, 李军. 装甲防护材料的新葩——陶瓷-金属功能梯度复合材料[J]. 纤维复合材料, 2007(1):56-59. JIAO Lijuan, LI Jun. Innovation of the armor protective materials-ceramic-metal functionally gradient composites[J]. Fiber Composite Materials, 2007(1):56-59. [59] ARIFIN A, SULONG A B, MUHAMAD N, et al. Material processing of hydroxyapatite and titanium alloy(HA/Ti) composite as implant materials using powder metallurgy:A review[J]. Materials&Design, 2014, 55:165-175. [60] WANG D, WANG H, SUN S, et al. Fabrication and characterization of Ti B2/Ti C composites[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45:95-101. [61] LIU Weiping, DUPONT J N. Fabrication of functionally graded Ti C/Ti composites by laser engineered net shaping[J]. Scripta Materialia, 2003, 48(9):1337-1342. [62] ZHANG Y, WEI Z, SHI L, et al. Characterization of laser powder deposited Ti-Ti C composites and functional gradient materials[J]. Journal of Materials Processing Technology, 2008, 206(1-3):438-444. [63] NISHINO T, URAI S, OKAMOTO I, et al. Wetting and reaction products formed at interface between Si C and Cu-Ti alloys[J]. Welding International, 1992, 6(8):600-605. [64] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic:Ti3Si C2[J]. Journal of the American Ceramic Society, 1996, 79(7):1953-1956. [65] LIU S, ZHANG L, YIN X, et al. Microstructure and mechanical properties of Si C and carbon hybrid fiber reinforced Si C matrix composite[J]. International Journal of Applied Ceramic Technology, 2011, 8(2):308-316. [66] FAN X, YIN X, CAO X, et al. Improvement of the mechanical and thermophysical properties of C/Si Ccomposites fabricated by liquid silicon infiltration[J]. Composites Science and Technology, 2015, 115:21-27. [67] GARBIEC D, LESHCHYNSKY V, COLELLA A, et al. Structure and deformation behavior of Ti-Si C composites made by mechanical alloying and spark plasma sintering[J]. Materials, 2019, 12(8):1276. [68] GIURANNO D, SOBCZAK N, BRUZDA G, et al. Studies of the joining-relevant interfacial properties in the Si-Ti/C and Si-Ti/Si C systems[J]. Journal of Materials Engineering and Performance, 2020(29):4864-4871. [69] MOVCHAN B A, YAKOVCHUK K Y. Graded thermal barrier coatings, deposited by EB-PVD[J]. Surface and Coatings Technology, 2004, 188:85-92. [70] ZHANG Y, BANDYOPADHYAY A. Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using laser engineered net shaping[J]. Additive Manufacturing, 2018, 21:104-111. [71] LI L, WANG J, LIN P, et al. Microstructure and mechanical properties of functionally graded Ti Cp/Ti6Al4V composite fabricated by laser melting deposition[J]. Ceramics International, 2017, 43(18):16638-16651. [72] ZHANG J, ZHANG Y, LI W, et al. Microstructure and properties of functionally graded materials Ti6Al4V/Ti Cfabricated by direct laser deposition[J]. Rapid Prototyping Journal, 2018, 24(4):677-687. [73] MAHAMOOD R M, AKINLABI E T. Laser metal deposition of functionally graded Ti6Al4V/Ti C[J]. Materials&Design, 2015, 84:402-410. [74] LI S N, XIONG H P, LI N, et al. Mechanical properties and formation mechanism of Ti/Si C system gradient materials fabricated by in-situ reaction laser cladding[J]. Ceramics International, 2017, 43(1):961-967. [75] LI N, LIU W, XIONG H, et al. In-situ reaction of Ti-Si-Ccomposite powder and formation mechanism of laser deposited Ti6Al4V/(Ti C+Ti3Si C2) system functionally graded material[J]. Materials&Design, 2019, 183:108155. [76] MUMTAZ K A, HOPKINSON N. Laser melting functionally graded composition of Waspaloy®and Zirconia powders[J]. Journal of Materials Science, 2007, 42(18):7647-7656. [77] DEMIR A G, PREVITALI B. Multi-material selective laser melting of Fe/Al-12Si components[J]. Manufacturing Letters, 2017, 11:8-11. [78] 张百成, 章林, 任淑彬, 等. 一种基于选区激光熔化技术制备梯度材料的装置及方法:中国, ZL201810292599. 9[P]. 2019-03-12. ZHANG Baicheng, ZHANG Lin, REN Shubin, et al. Device and method for preparing gradient material based on selective laser melting technology:China, ZL201810292599. 9[P]. 2019-03-12. |