机械工程学报 ›› 2021, Vol. 57 ›› Issue (21): 220-233.doi: 10.3901/JME.2021.21.220
汪延成1,2, 刘佳薇2, 盘何旻2, 梅德庆1,2
收稿日期:
2021-04-20
修回日期:
2021-08-18
出版日期:
2021-11-05
发布日期:
2021-12-28
通讯作者:
汪延成(通信作者),男,1982年出生,博士,教授。主要研究方向为机器人智能感知与检测、微制造技术。E-mail:yanchwang@zju.edu.cn
作者简介:
刘佳薇,女,1997年出生,硕士研究生。主要研究方向为声表面波辅助光固化三维打印技术。E-mail:21925168@zju.edu.cn;盘何旻,男,1998年出生,硕士研究生。主要研究方向为声表面波辅助光固化三维打印技术。E-mail:22025069@zju.edu.cn;梅德庆,男,1973年出生,博士,教授,博士研究生导师。主要研究方向为微细成形、微制造技术、三维打印技术。E-mail:medqmei@zju.edu.cn
基金资助:
WANG Yancheng1,2, LIU Jiawei2, PAN Hemin2, MEI Deqing1,2
Received:
2021-04-20
Revised:
2021-08-18
Online:
2021-11-05
Published:
2021-12-28
摘要: 聚合物基表面微结构在软体机器人、柔性电子器件、仿生机械、生物医学、组织工程等领域有着广泛的应用,将逐面式制造技术应用于聚合物基表面微结构的制造过程可解决传统微压印、光刻、逐点和逐线式制造方法加工周期长、效率低、大面积表面微结构制造脱模难等问题。发展聚合物基表面微结构的逐面式制造技术是当前先进制造技术的研究热点之一,具有广阔的应用前景。首先在阐述了常见的聚合物基表面微结构设计及其制造材料的基础上,重点论述了光刻、纳米压印、数字光投影式3D打印、能场辅助制造、自组装制造等五类逐面式成形制造技术方面的最新研究进展,包括各种制造技术的制造原理、工艺特点及表面微结构的典型应用等。最后,总结预测了聚合物基表面微结构设计、制造及应用方面的发展趋势,并对聚合物基表面微结构的逐面式成形制造技术的未来发展进行了展望。
中图分类号:
汪延成, 刘佳薇, 盘何旻, 梅德庆. 聚合物基表面微结构的逐面式制造技术研究进展[J]. 机械工程学报, 2021, 57(21): 220-233.
WANG Yancheng, LIU Jiawei, PAN Hemin, MEI Deqing. Recent Progress on Manufacturing Technologies in Layer-by-layer Mode for the Fabrication of Polymer-based Surface Microstructures[J]. Journal of Mechanical Engineering, 2021, 57(21): 220-233.
[1] Wang D H, Sun Q Q, Hokkanen M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810):55-59. [2] Lloyd V J, Nadeau N J. The evolution of structural colour in butterflies[J]. Current Opinion in Genetics and Development, 2021, 69:28-34. [3] Hensleigh R M, Cui H, Oakdale J S, et al. Additive manufacturing of complex micro-architected graphene aerogels[J]. Materials Horizons, 2018, 5(6):1035-1041. [4] Pandey A, Tzadka S, Yehuda D, et al. Soft thermal nanoimprint with a 10 nm feature size[J]. Soft Matter, 2019, 15(13):2897-2904. [5] 史玉升, 伍宏志, 闫春泽, 等. 4D打印-智能构件的增材制造技术[J]. 机械工程学报, 2020, 56(15):1-25. SHI Yusheng, WU Hongzhi, YAN Chunze, et al. Four-dimensional printing-the additive manufacturing technology of intelligent components[J]. Journal of Mechanical Engineering, 2020, 56(15):1-25. [6] Xun D F, Kohsuke K, Matthew G C, et al. Single crystal texture by directed molecular self-assembly along dual axes[J]. Nature Materials, 2019, 18(11):1235-1243. [7] Fang S J, Husson S, Fu C K, et al. Flexible tactile sensor array utilizing microstructured PDMS bumps with pedot:PSS conductive polymer[C]//IEEE International Conference on Micro Electro Mechanical Systems (MEMS), New York, 2017, pp. 1029-1032. [8] Guo B, Yu X, Zeng Z, et al. Ultra-precision cutting of linear micro-groove array for distributed feedback laser devices[J]. International Journal of Nanomanufacturing, 2018, 14(1):9-22. [9] Zhao X, Chen L, Li D F, et al. Biomimetic construction peanut-leaf structure on ammonium polyphosphate surface:Improving its compatibility with poly(lactic acid) and flame-retardant efficiency simultaneously[J]. Chemical Engineering Journal, 2021, 412:128737-10. [10] Yao Z F, Wang J Y, Pei J. High-performance polymer field-effect transistors:From the perspective of multi-level microstructures[J]. Chemical Science, 2021, 12(4):1193-1205. [11] Saarikoski I, Joki K F, Suvanto M, et al. Superhydrophobic elastomer surfaces with nanostructured micronails[J]. Surface Science, 2012, 606(1-2):91-98. [12] Gong D, Long J, Jiang D, et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template[J]. ACS Applied Materials & Interfaces, 2016, 8(27):17511-8. [13] Kang B, Hyeon J, So H. Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology[J]. Applied Surface Science, 2020, 499:143733-8. [14] Tang Q, Yao H, Xu B, et al. Integrated effect of hierarchical structure combining isotropic worm-like pit with anisotropic inverted nanopyramid for quasi-omnidirectional c-Si solar cell[J]. Materials Science in Semiconductor Processing, 2021, 121:105363-7. [15] Xu J, Si Y, Li Z, et al. Multiscale structure enabled effective plasmon coupling and molecular enriching for SERS detection[J]. Applied Surface Science, 2021, 544:148908-10. [16] Abubaker S S, Zhang Y. Optimization design and fabrication of polymer micro needle by hot embossing method[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(4):631-640. [17] Gao J, Peng L, Deng Y, et al. Experimental studies on micro powder hot embossing for high-aspect-ratio microstructures with ultra-high molecular weight polyethylene powders[J]. Journal of Micromechanics and Microengineering, 2020, 30(11):115011-10. [18] Lee K M, Ngo C V, Jeong J Y, et al. Fabrication of an anisotropic superhydrophobic polymer surface using compression molding and dip coating[J]. Coatings, 2017, 7(11):194-12. [19] Liu H, Jiang W, Ding Y, et al. Roller-reversal imprint process for preparation of large-area microstructures[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2010, 28(1):104-109. [20] Wang Z, Nandyala D, Colosqui C E, et al. Glass surface micromachining with simultaneous nanomaterial deposition by picosecond laser for wettability control[J]. Applied Surface Science, 2021, 546:149050-9. [21] Mei D q, Xue D, Wang Y c, et al. Undulate microarray fabrication on polymer film using standing surface acoustic waves and ultraviolet polymerization[J]. Applied Physics Letters, 2016, 108(24):241911-4. [22] Park S H, Lee S, Moreira D, et al. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing[J]. Scientific Reports, 2015, 5:15430-9. [23] Tang H, Nie P, Wang R, et al. Piezoresistive electronic skin based on diverse bionic microstructure[J]. Sensors and Actuators A:Physical, 2021, 318:112532-9. [24] Huang C Y, Lai M F, Liu W L, et al. Anisotropic wettability of biomimetic micro/nano dual-scale inclined cones fabricated by ferrofluid-molding method[J]. Advanced Functional Materials, 2015, 25(18):2670-2676. [25] Yang Y, Chen Z, Song X, et al. Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing[J]. Advanced Materials, 2017, 29(11):1605750-20. [26] Duan L, Lv X, He Q, et al. Geometry-on-demand fabrication of conductive microstructures by photoetching and application in hemostasis assessment[J]. Biosensors and Bioelectronics, 2020, 150:111886-6. [27] 戈欢, 张发军, 黄海瑛, 等. 纳米压印调控PCL-b-PLLA受限结晶取向行为的研究[J]. 高分子学报, 2019, 50(01):82-90. GA Huan, ZHANG Fajun, HUANG Haiying, et al. Studies on the crystallization orientation in micromolded PCL-b-PLLA thin films[J]. Acta Polymerica Sinica, 2019, 50(1):82-90. [28] 罗怡, 闫旭, 陈莉, 等. 聚合物微结构热辅助超声波压印成形[J]. 光学精密工程, 2014, 22(05):1220-1226. Luo Yi, Yan Xu, Chen Li, et al. Replication of polymer microstructure using thermal-assistedultrasonic embossing[J]. Optics and Precision Engineering, 2014, 22(05):1220-1226. [29] Nowduri B, Schulte S, Decker D, et al. Biomimetic nanostructures fabricated by nanoimprint lithography for improved cell-coupling[J]. Advanced Functional Materials, 2020, 30(45):2004227-10. [30] Yang M, Xu K, Wang L. Flexible touch sensor fabricated by double-sided nanoimprint lithography metal transfer[J]. Nanotechnology, 2020, 31(31):315302-5. [31] Xue D, Wang Y C, Zhang J X, et al. Projection-based 3D printing of cell patterning scaffolds with multiscale channels[J]. ACS Applied Materials & Interfaces, 2018, 10(23):19428-19435. [32] Yuan C, Kowsari K, Panjwani S, et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing[J]. ACS Applied Materials & Interfaces, 2019, 11(43):40662-40668. [33] Zhang J, Ye S, Liu H, et al. 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors[J]. Nano Energy, 2020, 77:105300-12. [34] 高文, 郑美玲, 金峰, 等. 飞秒激光快速制备大面积二维微纳结构[J]. 激光与光电子学进展, 2020, 57(11):111421-8. GAO Wen, ZHENG Meiling, JIN Feng, et al. Fast fabrication of large-area two-dimensional micro/nanostructure by femtosecond laser[J]. Laser & Optoelectronics Progress, 2020, 57(11):111421-8. [35] WANG Y, WANG Y C, MEI D Q, et al. Scalable printing of bionic multiscale channel networks through digital light processing-based three-dimensional printing process[J]. 3D Printing and Additive Manufacturing, 2020, 7(3):115-125. [36] Yang Y, Li X, Chu M, et al. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability[J]. Science Advances, 2019, 5(4):9490-11. [37] Ma Y, Wu Q, Duanmu L, et al. Bioinspired composites reinforced with ordered steel fibers produced via a magnetically assisted 3D printing process[J]. Journal of Materials Science, 2020, 55(32):15510-15522. [38] Joyee E B, Szmelter A, Eddington D, et al. Magnetic field-assisted stereolithography for productions of multimaterial hierarchical surface structures[J]. ACS Applied Materials & Interfaces, 2020, 12(37):42357-42368. [39] Han C Y, Wang Y C, Mei D Q. Acoustofluidic waveguides for fabrication of localized polymeric microstructure arrays[J]. Applied Physics A:Materials Science and Processing, 2020, 126(8):651-12. [40] Sazan H, Piperno S, Layani M, et al. Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves[J]. Journal of Colloid and Interface Science, 2019, 536:701-709. [41] Meng Z, Li G, Yiu S C, et al. Nanoimprint lithography-directed self-assembly of bimetallic Iron-M (M=Palladium, Platinum) complexes for magnetic patterning[J]. Angewandte Chemie-International Edition, 2020, 59(28):11521-11526. [42] Jambhulkar S, Xu W, Franklin R, et al. Integrating 3D printing and self-assembly for layered polymer/nanoparticle microstructures as high-performance sensors[J]. Journal of Materials Chemistry C, 2020, 8(28):9495-9501. [43] D'Imperio L A, McCrossan A F, Naughton J R, et al. Arrays of electrically-addressable, optically-transmitting 3D nanostructures on free-standing, flexible polymer films[J]. Flexible and Printed Electronics, 2018, 3(2):025007-8. [44] Song X, Fu D, Shah S, et al. UV-micropatterned miniaturization:Rapid in situ photopatterning and miniaturization of microscale features on shrinkable thermoplastics[J]. Advanced Materials Technologies, 2020, 5(6):2000146-7. [45] Uozu Y, Tabor C E, Kajzar F, et al. Continuous roll imprinting of moth-eye antireflection surface using anodic porous alumina and multi-functionalities on the moth-eye surface[C]//International Conference on Organic Photonic Materials and Devices XXII, 2020. [46] Park K C, Choi H J, Chang C H, et al. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity[J]. ACS Nano, 2012, 6(5):3789-3799. [47] Yang C H, Yang S Y. A high-brightness light guide plate with high precise double-sided microstructures fabricated using the fixed boundary hot embossing technique[J]. Journal of Micromechanics and Microengineering, 2013, 23(3):035033-14. [48] Wu C H, Lu C H. Fabrication of an LCD light guide plate using closed-die hot embossing[J]. Journal of Micromechanics and Microengineering, 2008, 18(3):035006-10. [49] Liu C W, Lee C H, Lin S C. Sub-wavelength gratings fabricated on a light bar by roll-to-roll UV embossing process[J]. Optics Express, 2011, 19(12):11299-11311. [50] Wang L, Huang X, Wang D, et al. Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range[J]. Chemical Engineering Journal, 2021, 405:127025-10. [51] Gan X, Wang J, Wang Z, et al. Simultaneous realization of conductive segregation network microstructure and minimal surface porous macrostructure by SLS 3D printing[J]. Materials & Design, 2019, 178:107874-10. [52] 汪延成, 鲁映彤, 丁文, 等. 柔性触觉传感器的三维打印制造技术研究进展[J]. 机械工程学报, 2020, 56(19):239-252. WANG Yancheng, LU Yingtong, DING Wen, et al. Three recent progress on-dimensional printing processes to fabricate flexible tactile sensors[J]. Journal of Mechanical Engineering, 2020, 50(19):239-252. [53] Zhang J, Zhou L J, Zhang H M, et al. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene[J]. Nanoscale, 2018, 10(16):7387-7395. [54] Lee Y, Park J, Cho S, et al. Flexible Ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range[J]. ACS Nano, 2018, 12(4):4045-4054. [55] Pan L, Chortos A, Yu G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communications, 2014, 5:3002-8. [56] DAEHOON H, CINDY F, CHEN Y, et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel[J]. Applied Materials & Interfaces, 2018, 10:17512-17518. [57] Mohammadi M, Mousavi Shaegh S A, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration:Recent advances and emerging designs[J]. Journal of Controlled Release, 2018, 274:35-55. [58] Suethao S, Shah D U, Smitthipong W. Recent progress in processing functionally graded polymer foams[J]. Materials (Basel), 2020, 13(18):4060-16. [59] Williams N P, Rhodehamel M, Yan C, et al. Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates[J]. Biomaterials, 2020, 240:119856-10. [60] Marques-Almeida T, Cardoso V F, Gama M, et al. Patterned piezoelectric scaffolds for osteogenic differentiation[J]. International Journal of Molecular Sciences, 2020, 21(21):8352-8. [61] Oladapo B I, Zahedi S A, Ismail S O, et al. 3D printing of PEEK-cHAp scaffold for medical bone implant[J]. Bio-Design and Manufacturing, 2020, 4(1):44-59. [62] Rezai Rad M, Fahimipour F, Dashtimoghadam E, et al. Osteogenic differentiation of adipose-derived mesenchymal stem cells using 3D-Printed PDLLA/β-TCP nanocomposite scaffolds[J]. Bioprinting, 2021, 21:00117-9. [63] Cai J, Li X, Ma L, et al. Facile large-scale alignment and assembly of conductive micro/nano particles by combining both flow shear and electrostatic interaction[J]. Composites Science and Technology, 2019, 171:199-205. [64] Cheng Z, Zhang D, Lv T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Advanced Functional Materials, 2018, 28(7):1705002-11. [65] Zhang W, Wang H, Wang H, et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers[J]. Nature Communications, 2021, 12(1):112-8. [66] Zhou M, Xiong X, Jiang B, et al. Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding[J]. Applied Surface Science, 2018, 427:854-860. [67] Lv T, Cheng Z, Zhang D, et al. Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage[J]. ACS Nano, 2016, 10(10):9379-9386. [68] 李延强, 兰红波, 许权, 等. 纳米压印复合软模具建模研究[J]. 机械工程学报, 2018, 54(19):170-181. LI Yanqiang, LAN Hongbo, XU Quan, et al. Modeling of flexible composite mold for nanoimprint lithography[J]. Journal of Mechanical Engineering, 2018, 54(19):170-181. |
[1] | 朱利斌, 王英, 聂帅帅, 黄海鸿, 刘志峰. 基于质量流量优化的超临界CO2辅助切削加工热平衡研究[J]. 机械工程学报, 2024, 60(19): 367-376. |
[2] | 刘明良, 唐颀, 田小永, 刘腾飞, 秦滢杰, 李涤尘. 连续纤维增强加筋圆柱壳回转3D打印工艺及其轴压性能研究[J]. 机械工程学报, 2024, 60(15): 283-290. |
[3] | 温秋玲, 杨野, 黄辉, 黄国钦, 胡中伟, 陈金鸿, 汪晖, 吴贤. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(9): 168-188. |
[4] | 关集俱, 祝正兵, 徐正亚, 栾志强, 许雪峰. CNTs@T321微囊制备的纳米流体与砂轮磨削时的双重润滑增效机制[J]. 机械工程学报, 2024, 60(9): 351-363. |
[5] | 赵希坤, 李聪波, 杨勇, 吕岩, 姜书艳. 数据-机理混合驱动下考虑刀具柔性的柔性加工工艺参数能效优化方法[J]. 机械工程学报, 2024, 60(7): 236-248. |
[6] | 刘春景, 唐敦兵, 陈兴强, 魏天路. 基于改进完全离散化法铣削系统稳定性研究[J]. 机械工程学报, 2023, 59(15): 162-173. |
[7] | 田志强, 姜兴宇, 杨国哲, 刘伟军, 索英祁, 陈克强, 邢飞. 一种面向航天复杂构件的柔性作业车间能耗优化调度问题研究[J]. 机械工程学报, 2023, 59(8): 273-287. |
[8] | 吕岩, 徐正军, 李聪波, 李玲玲, 杨秒. 考虑扰动事件的机械加工工艺参数与车间动态调度综合节能优化[J]. 机械工程学报, 2022, 58(19): 242-255. |
[9] | 李思念, 黄海鸿, 赵伦武, 刘志峰. 外加磁场对等离子熔覆FeCoNiCr0.5B高熵合金涂层组织与性能的影响[J]. 机械工程学报, 2022, 58(13): 251-260. |
[10] | 张嘉恒, 胡志力. 铝合金搅拌摩擦焊接头组织热稳定性[J]. 机械工程学报, 2022, 58(6): 73-80. |
[11] | 李聪波, 王睿, 寇阳, 吕岩, 赵希坤. 考虑设备预维护的柔性作业车间调度节能优化方法[J]. 机械工程学报, 2021, 57(10): 220-230. |
[12] | 张阳, 吴宝海, 夏卫红, 张莹, 赵静. 变切深工况下恒定切削力约束的多目标进给量优化方法[J]. 机械工程学报, 2021, 57(5): 242-250. |
[13] | 李聪波, 余必胜, 肖溱鸽, 孙鑫, 吕岩. 考虑刀具磨损的数控车削批量加工工艺参数节能优化方法[J]. 机械工程学报, 2021, 57(1): 217-229. |
[14] | 赵广, 金鑫, 崔颖, 冯志飞, 王亭月, 熊志亮. 基于模态应变能的接触刚度识别方法[J]. 机械工程学报, 2020, 56(9): 147-153. |
[15] | 胡志力, 范新欣, 华林. 高强铝合金FSW拼焊板变形规律与成形技术[J]. 机械工程学报, 2020, 56(6): 206-212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||