• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (2): 239-246.doi: 10.3901/JME.2021.02.239

• 交叉与前沿 • 上一篇    下一篇

扫码分享

板带力学性能预报的集成学习模型及其可靠性评价

李飞飞1,2, 宋勇1,2, 刘超1,2, 李博1,2, 张世伟1,2   

  1. 1. 北京科技大学高效轧制国家工程研究中心 北京 100083;
    2. 北京科技大学国家板带生产先进装备工程技术研究中心 北京 100083
  • 收稿日期:2020-05-01 修回日期:2020-10-30 出版日期:2021-01-20 发布日期:2021-03-15
  • 通讯作者: 宋勇(通信作者),男,副研究员,硕士研究生导师。主要研究方向为轧制过程控制模型及智能化。E-mail:songyong@ustb.edu.cn
  • 作者简介:李飞飞,男,1993年出生,博士研究生。主要研究方向为复杂工业过程建模与优化控制。E-mail:15311449327@163.com
  • 基金资助:
    国家自然科学基金(51674028)和广西创新驱动发展专项资金计划(GKAA17202008)资助项目。

Ensemble Learning Model for Mechanical Performance Prediction of Strip and Its Reliability Evaluation

LI Feifei1,2, SONG Yong1,2, LIU Chao1,2, LI Bo1,2, ZHANG Shiwei1,2   

  1. 1. National Engineering Research Center for Advanced Rolling Technology, University of Science and Technology Beijing, Beijing 100083;
    2. National Engineering Technology Research Center of Flat Rolling Equipment, University of Science and Technology Beijing, Beijing 100083
  • Received:2020-05-01 Revised:2020-10-30 Online:2021-01-20 Published:2021-03-15

摘要: 热轧板带力学性能预报具有十分广阔的应用前景。但目前的力学性能预报模型精度不高、泛化能力较差,且无法评价预测结果的准确性,限制了其在实际应用中的效果。为了提高力学性能预报模型的精度和实现预测结果的可靠性评价,采用BP神经网络将目前直接预测力学性能结果的建模方法转换为对样本间的力学性能偏差分布预测的建模,并结合模型预测结果分布的离散程度设计可靠性评价指标,同时采用集成学习提高模型的泛化能力。通过试验验证,该集成学习模型具有较高的预测精度,进一步,根据可靠性评价指标分析,除了其中占比约3.5%样本的预测结果具有较大不确定性,剩余样本的屈服强度和抗拉强度在误差±30 MPa的预测准确率达到了98.45%和98.97%,延伸率在误差±5%下的预测准确率达到了99.48%,有效地提高了模型预测准确率,在生产现场应用中具有一定的指导意义。

关键词: 偏差预测, 力学性能预测, 神经网络, 集成学习, 可靠性评价

Abstract: The prediction of mechanical properties of hot rolled strips has a very broad application prospect. However, the current mechanical performance prediction model is not accurate and the generalization ability is poor, and the accuracy of the prediction results cannot be evaluated, which limits its effectiveness in practical applications. In order to improve the accuracy of the mechanical performance prediction model and the reliability evaluation of the prediction results, BP neural network is used to transform the current modeling method of direct prediction of mechanical performance results into the modeling of mechanical property deviation distribution prediction between samples, and combined with the model. The degree of dispersion of the prediction results is designed to evaluate the reliability evaluation index, and ensemble learning is used to improve the generalization ability of the model. Through experimental verification, the ensemble learning model has higher prediction accuracy. Further, according to the reliability evaluation index analysis, except for the prediction results of about 3.5% of the samples, there is greater uncertainty, and the yield strength and tensile strength of the remaining samples. The prediction accuracy of the intensity ±30 MPa is 98.45% and 98.97%, and the prediction accuracy of the elongation under the error of ±5% is 99.48%, which effectively improves the accuracy of model prediction and has certain performance in production field applications. Guiding significance.

Key words: deviation prediction, mechanical performance prediction, neural network, ensemble learning, reliability evaluation

中图分类号: