[1] 干勇. 薄板坯连铸连轧(TSCR)热轧过程组织性能预报技术的开发[J]. 钢铁,2003,38(8):10-15. GAN Yong. The R&D of process modeling in thin slab hot strip rolling[J]. Iron & Steel,2003,38(8):10-15. [2] 余万华,韩静涛,佘广夫,等. HSMM软件在攀枝花钢铁公司热轧板厂的应用[J]. 钢铁研究学报,2006(11):60-62. YU Wanhua,HAN Jingtao,SHE Guangfu,et al. Application of HSMM software in hot strip mill of panzhihua steel company[J]. Journal of Iron and Steel Research,2006(11):60-62. [3] GHRIBERNIG J,GHUBMER D. For the first time ever:Full metallurgical control of the mechanical properties of hot-rolled strip with VAI-Q strip[J]. Iron & Steel,2001(01):42-46. [4] 王蕾. 热轧带钢的相变和力学性能模型研究及应用[D]. 北京:北京科技大学,2017. WANG Lei. Research and application of phase transformation and mechanical properties models in hot strip rolling[D]. Beijing:University of Science and Technology Beijing,2017. [5] 郑坚,唐广波,程杰锋,等. 珠钢CSP热轧组织性能预报软件设计[J]. 轧钢,2003(1):15-17. ZHENG Jian,TANG Guangbo,CHENG Jiefeng,et al. Software design of microstructure and property prediction system for CSP line of Zhujiang Steel Co[J]. Steel Rolling,2003(1):15-17. [6] 刘正东,董瀚,干勇. 热连轧过程中组织性能预报系统的应用[J]. 钢铁,2003(2):68-71. LIU Zhengdong,DONG Han,GAN Yong. Application of process modeling to hot strip rolling[J]. Iron & Steel,2003(2):68-71.. [7] 郭朝晖,张群亮,苏异才,等. 关于热轧带钢力学性能预报技术的思考[J]. 冶金自动化,2009,33(2):1-6. GUO Zhaohui,ZHANG Qunliang,SU Yicai,et al. Thoughts on mechanical property prediction of hot rolled strip[J]. Metallurgical Industry Automation,2009,33(2):1-6. [8] 马湧,王晓鹏,马莎莎. 基于Keras深度学习框架下BP神经网络的热轧带钢力学性能预测[J]. 冶金自动化,2019,43(2):6-10. MA Yong,WANG Xiaopeng,MA Shasha. Prediction of mechanical properties of hot rolled strip based on BP neural network under Keras deep learning framework[J]. Metallurgical Industry Automation,2019,43(2):6-10. [9] 贾涛,刘振宇,胡恒法,等. 基于贝叶斯神经网络的SPA-H热轧板力学性能预测[J]. 东北大学学报,2008(4):521-524. JIA Tao,LIU Zhenyu,HU Hengfa,et al. Mechanical property prediction for hot rolled SPA-H steel using bayesian neural network[J]. Journal of Northeastern University,2008(4):521-524. [10] 李维刚,杨威,赵云涛,等. 融合大数据与冶金机理的热轧带钢力学性能预报模型[J]. 钢铁研究学报,2018,30(4):302-308. LI Weigang,YANG Wei,ZHAO Yuntao,et al. Mechanical property prediction model of hot-rolled strip via big data and metallurgical mechanism analysis[J]. Journal of Iron and Steel Research,2018,30(4):302-308. [11] 李维刚,刘超,杨威,等. 热轧微合金钢力学性能预报模型研究[C]//第十一届中国钢铁年会论文集——S18:冶金自动化与智能管控. 北京:中国金属学会,2017:1-8. LI Weigang,LIU Chao,YANG Wei,et al. Prediction model of mechanical properties of hot-rolled micro-alloyed steel[C]//Proceedings of the 11th CSM Steel Congress:Metallurgical Automation and Intelligent Control. Beijing:The Chinese Society for Metals,2017:1-8. [12] 郭朝晖,苏异才,张群亮,等. 热轧带钢性能预报技术研究中的几个误区[J]. 轧钢,2013,30(1):29-32. GUO Zhaohui,SU Yicai,ZHANG Qunliang,et al. Wrong cognitions on research of hot-rolled strip property prediction[J]. Steel Rolling,2013,30(1):29-32. [13] BREIMAN L. Bagging predictors[J]. Machine Learning,1996,24(2):123-140. [14] 闫飞宇,李伟卓,杨卫卫,等. 基于Bagging神经网络集成的燃料电池性能预测方法[J]. 中国科学:技术科学,2019,49(4):391-401. YAN Feiyu,LI Weizhuo,YANG Weiwei,et al. Prediction of fuel cell performance based on Bagging neural network ensemble model[J]. Scientia Sinica Technologica,2019,49(4):391-401. [15] 谢琪,程耕国,徐旭. 基于神经网络集成学习股票预测模型的研究[J]. 计算机工程与应用,2019,55(8):238-243. XIE Qi,CHENG Gengguo,XU Xu. Research based on stock predicting model of neural networks ensemble learning[J]. Computer Engineering and Applications,2019,55(8):238-243. [16] 王征宇. 神经网络集成分类方法及其在并行计算环境中的应用研究[D]. 广州:华南理工大学,2015. WANG Zhengyu. Research on neural network ensemble classification methods and their applications in parallel computing environment[D]. Guangzhou:South China University of Technology,2015. [17] 于彬,李珊,陈成,等. 基于集成学习的人类LncRNA大数据基因预测[J]. 青岛科技大学学报,2018,39(1):106-113. YU Bin,LI Shan,CHEN Cheng,et al. Prediction of human lncRNA big data genes based on ensemble learning[J]. Journal of Qingdao University of Science and Technology,2018,39(1):106-113. [18] 张祝亭. 基于数据挖掘的马钢CSP热轧板卷的性能预测[D]. 马鞍山:安徽工业大学,2012. ZHANG Zhuting. The prediction of masteel CSP hot rolled strip based on data mining[D]. Maanshan:Anhui University of Technology,2012. [19] 刘贵立,张国英,曾梅光. 用人工神经网络模型研究微量元素对钢力学性能的影响[J]. 钢铁研究,2000(1):48-50. LIU Guili,ZHANG Guoying,ZENG Meiguang. Studies on effects of trace elements on mechanical properties of steel by artificial nerve network model[J]. Research on Iron & Steel,2000(1):48-50. [20] LIU Feitong,TING Kaiming,ZHOU Zhihua. Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining,December 15-19,2008. Pisa:IEEE,2009:413-422. [21] LIU Feitong,TING Kaiming,ZHOU Zhihua. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery From Data,2012,6(1):1-39. [22] 赵帅,黄亦翔,王浩任,等. 基于随机森林与主成分分析的刀具磨损评估[J]. 机械工程学报,2017,53(21):181-189. ZHAO Shuai,HUANG Yixiang,WANG Haoren,et al. Random forest and principle components analysis based on health assessment methodology for tool wear[J]. Journal of Mechanical Engineering,2017,53(21):181-189. [23] HORNIK KM,STINCHCOMB M,WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks,1989,2(5):359-366. [24] 从威. 非均衡分类的集成学习应用研究[D]. 南京:南京信息工程大学,2017. CONG Wei. Application research on ensemble learning of unbalanced classification[D]. Nanjing:Nanjing University of Information Science & Technology,2017. [25] KHOSRAVI A,NAHAVANDI S,CREIGHTON D. Construction of optimal prediction intervals for load forecasting problems[J]. IEEE Transactions on Power Systems,2010,25(3):1496-1503. |