[1] 金学松,刘启跃. 轮轨摩擦学[M]. 北京:中国铁道出版社,2004. JIN Xuesong,LIU Qiyue. Wheel rail tribology[M]. Beijing:China Railway Publishing House Co.,Ltd.,2004. [2] 丁军君,李东宇,王军平,等. 钢轨磨耗对轮轨滚动接触关系的影响研究[J]. 机械工程学报,2018,54(4):142-149. DING Junjun,LI Dongyu,WANG Junping,et al. Effect of rail wear on wheel/rail rolling contact conditions[J]. Journal of Mechanical Engineering,2018,54(4):142-149. [3] 中国铁路总公司. TG/GW 102-2019普速铁路线路修理规则[S]. 北京:中国铁道出版社,2019. China Railway Corporation. TG/GW 102-2019 Repair rules for normal speed railway line[S]. Beijing:China Railway Publishing House Co.,Ltd.,2019. [4] 李霞,金学松,胡东. 车轮磨耗计算模型及其数值方法[J]. 机械工程学报,2009,45(9):193-200. LI Xia,JIN Xuesong,HU Dong. Theoretical model and numerical method of wheel profile wear[J]. Journal of Mechanical Engineering,2009,45(9):193-200. [5] ZOBORY I. Prediction of wheel/rail profile wear[J]. Vehicle System Dynamics,1997,28(2-3):221-259. [6] JIN X,WEN Z,XIAO X,et al. A numerical method for prediction of curved rail wear[J]. Multibody System Dynamics,2007,18(4):531-557. [7] 许玉德,魏恺,孙小辉,等. 钢轨磨耗预测模型及其算法的优化[J]. 中国铁道科学,2016,37(4):48-53. XU Yude,WEI Kai,SUN Xiaohui,et al. Prediction model and algorithm optimization for rail wear[J]. China Railway Science,2016,37(4):48-53. [8] 孙宇,翟婉明. 钢轨磨耗演变预测模型研究[J]. 铁道学报,2017,39(8):1-9. SUN Yu,ZHAI Wanming. A prediction model for rail wear evolution[J]. Journal of the China Railway Society,2017,39(8):1-9. [9] 王璞,高亮,蔡小培. 重载铁路钢轨磨耗演变过程的数值模拟[J]. 铁道学报,2014,36(10):70-75. WANG Pu,GAO Liang,CAI Xiaopei. Numerical simulation of rail wear evolution of heavy-hual railways[J]. Journal of the China Railway Society,2014,36(10):70-75. [10] 张军,刘佳欢,王雪萍,等. 基于有限元摩擦功计算的钢轨磨耗预测方法[J]. 机械工程学报,2019,55(14):104-111. ZHANG Jun,LIU Jiahuan,WANG Xueping,et al. Wheel-rail friction work calculation method and rail wear prediction based on finite element method[J]. Journal of Mechanical Engineering,2019,55(14):104-111. [11] 孙宏,杜新民. 提速200 km/h线路曲线病害及钢轨磨耗发展规律研究[J]. 铁道建筑,2007(11):84-86. SUN Hong,DU Xinmin. Research on curve defects and rail wear development law of 200 km/h speed-up lines[J]. Railway Engineering,2007(11):84-86. [12] 王平,王彩芸,王文健,等. GA-BP网络在钢轨磨损量预测中的应用[J]. 润滑与密封,2011,36(2):99-102,71. WANG Ping,WANG Caiyun,WANG Wenjian,et al. Application of GA-BP ANN in the prediction of wear volumes of rail steel[J]. Lubrication Engineering,2011,36(2):99-102,71. [13] SHEBANI A,IWNICKI S. Prediction of wheel and rail wear under different contact conditions using artificial neural networks[J]. Wear,2018,406-407:173-184. [14] MEGHOE A,LOENDERSLOOT R,TINGA T. Rail wear and remaining life prediction using meta-models[J]. International Journal of Rail Transportation,2020,8(1):1-26. [15] 陈峰,张金雷,王子甲. 铁路小半径曲线外轨侧磨影响因素分析[J]. 铁道科学与工程学报,2018,15(7):1678-1684. CHEN Feng,ZHANG Jinlei,WANG Zijia. Analysis of influencing factors on side wear of small radius curve[J]. Journal of Railway Science and Engineering,2018,15(7):1678-1684. [16] 彭丽宇,陶凯,黎国清. 重载铁路综合检测列车和数据综合分析系统[J]. 铁道建筑,2016(12):109-113. PENG Liyu,TAO Kai,LI Guoqing. Comprehensive inspection train and data comprehensive analysis of heavy hual railway[J]. Railway Engineering,2016(12):109-113. [17] GOODFELLOW I,BENGIO Y,COURVILLE A. Deep learning[M]. Cambridge:MIT Press,2016. |