机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 269-292.doi: 10.3901/JME.2021.16.269
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
房芳, 郑辉, 汪玉, 邱雷
收稿日期:
2020-09-09
修回日期:
2021-03-02
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
邱雷(通信作者),男,1983年出生,博士,教授,博士研究生导师。主要研究方向为飞行器结构健康监测、多参量传感、智能监测系统等。E-mail:lei.qiu@nuaa.edu.cn
作者简介:
房芳,女,1992年出生,博士研究生。主要研究方向为机械结构健康监测及概率诊断。E-mail:fang@nuaa.edu.cn;郑辉,男,1992年出生,博士研究生。主要研究方向为机械结构健康监测及高温环境可靠导波监测。E-mail:zhenghui@nuaa.edu.cn;汪玉,男,1996年出生,博士研究生。主要研究方向为机械结构健康监测及智能传感系统研制。E-mail:wangyu@nuaa.edu.cn
基金资助:
FANG Fang, ZHENG Hui, WANG Yu, QIU Lei
Received:
2020-09-09
Revised:
2021-03-02
Online:
2021-08-20
Published:
2021-11-16
摘要: 随着我国航空航天飞行器、高速列车、核电风电及舰船深潜等机械装备技术的发展,机械结构的高效快速运维对保障机械装备的高性能、高可靠性运转至关重要。机械结构健康监测能够在结构试验和服役全过程中对结构状态进行监控,实现精细化视情维护,提高结构的可靠性并降低运维费用,故机械结构健康监测技术备受重视。围绕机械结构健康监测,梳理其在航空航天、能源化工、风力发电、交通运输领域的发展现状,并对实现机械结构健康监测涉及的先进传感技术、监测系统及监测方法发展现状进行了总结和评述,最后对机械结构健康监测技术的发展趋势进行了展望。
中图分类号:
房芳, 郑辉, 汪玉, 邱雷. 机械结构健康监测综述[J]. 机械工程学报, 2021, 57(16): 269-292.
FANG Fang, ZHENG Hui, WANG Yu, QIU Lei. Mechanical Structural Health Monitoring: A Review[J]. Journal of Mechanical Engineering, 2021, 57(16): 269-292.
[1] VOLAND R T,HUEBNER L D,MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica,2006,59(1-5):181-191. [2] KRECHETOV P P,NERONOV V V,KOROLEVA T V,et al. Transformation of the soil-vegetation cover in carrier rocket first-stage impact areas[J]. Arid Ecosystems,2011,1(1):59. [3] 涂善东. 安全4.0:过程工业装置安全技术展望[J]. 化工进展,2016,35(6):1646-1651. TU Shantung. Safety 4.0:an outlook on safety technology for process installations[J]. Chemical Industry and Engineering Progress,2016,35(6):1646-1651. [4] 李冲,巫江虹,姜峰. "四纵四横"高铁线路列车空调动态负荷计算及节能策略[J]. 机械工程学报,2018,54(18):162-169. LI Chong,WU Jianghong,JIANG feng. Dynamic load calculation and energy conservation strategy study for "four vertical and four horizontal" high-speed rail air conditioner[J]. Journal of Mechanical Engineering,2018,54(18):162-169. [5] 王国彪,何正嘉,陈雪峰,等. 机械故障诊断基础研究"何去何从"[J]. 机械工程学报,2013,49(1):63-72. WANG Guobiao,HE Zhengjia,CHEN Xuefeng,et al. Basic research on machinery fault diagnosis-what is the prescription[J]. Journal of Mechanical Engineering,2013,49(1):63-72. [6] ECKBRETH A,SAFF C,CONNOLLY K,et al. Report on sustaining air force aging aircraft into the 21st century[R]. United States Air Force Scientific Advisory Board,Washington DC,USA,2011. [7] IATA's maintenance cost technical group. Airline maintenance cost executive commentary[EB/OL].[2019-12]. https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-public.pdf. [8] HU Yawei,LIU Shujie,LU Huitian,et al. Remaining useful life model and assessment of mechanical products:a brief review and a note on the state space model method[J]. Chinese Journal of Mechanical Engineering,2019,32(1):1-20. [9] 袁慎芳. 结构健康监控[M]. 北京:国防工业出版社,2007. YUAN Shenfang. Structural health monitoring[M]. Beijing:National Defense Industry Press,2007. [10] Committee for the review of NASA's aviation safety-related programs,National research council. Advancing aeronautical safety:A review of NASA's aviation safety-related research programs[R]. The National Academies Press,2010. [11] MCCOLLOM N N,BROWN E R. PHM on the F-35 fighter[C]//Institute of Electrical and Electronics Engineers. 2011 IEEE Conference on Prognostics and Health Management,June 20-23,2011,Denver,USA:IEEE,2011:1-10. [12] REVELEY M S,BRIGGS J L,EVANS J K,et al. Commercial aircraft integrated vehicle health management study[R]. NASA/TM-2010-215808,2010. [13] PAGET C,SPECKMANN H,KRICHEL T,et al. Validation of SHM sensors in airbus A380 full-scale fatigue test[M]. New Jersey:John Wiley & Sons,Ltd,2009. [14] BOTTI J. SHM in the airbus group[C]//Stanford University. Proceedings of 10th International Workshop on Structural Health Monitoring,September 1-4,2015,Stanford,CA,USA:Stanford University,2015:7:18. [15] BUTTERWORTH-HAYES P. Europe seeks 7E7 work[J]. Aerospace America,2003,41(11):4-6. [16] HUSSAIN N. Structural health monitoring and its role in affordability[C]//Stanford University. Proceedings of 10th International Workshop on Structural Health Monitoring,September 1-4,2015,Stanford,CA,USA:Stanford University,2015:31-37. [17] SAE ARP6461. Guidance for implementation of structural health monitoring on fixed wing aircraft[S]. New York:SAE International,2013. [18] BUDERATH M,MCFEAT J,AZZAM H. The need for guidance on integrating structural health monitoring within military aircraft systems[J]. Structural Health Monitoring,2014,13(6):581-590. [19] 袁慎芳,邱雷,王强,等. 压电-光纤综合结构健康监测系统的研究及验证[J]. 航空学报,2009,30(2):348-356. YUAN Shenfang,QIU Lei,WANG Qiang,et al. Applicat ion research of a hybrid piezoelectric-optic fiber integrated structural health monitoring system[J]. Acta Aeronautica et Astronautica Sinica,2009,30(2):348-356. [20] 卿新林,王奕首,赵琳. 结构健康监测技术及其在航空航天领域中的应用[J]. 实验力学,2012,7(5):517-526. QING Xinlin,WANG Yishou,ZHAO Lin. Structural health monitoring technology and its application in aeronautics and astronautics[J]. Journal of Experimental Mechanics,2012,7(5):517-526. [21] 孙侠生,肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报,2014,35(12):3199-3212. SUN Xiasheng,XIAO Yingchun. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautica Sinica,2014,35(12):3199-3212. [22] 杨频萍. 星光丨国家自然科学基金创新研究群体带头人袁慎芳:为飞机"做体检"的女超人[EB/OL]. 南京:新华报业网,2019.[2019-12-03]. http://news.xhby.net/nj/zx/201912/t20191203_6429580.shtml. YANG Zhenping. Xingguang-Yuan Shenfang-Leader of the innovation research group of the National Natural Science Foundation of China:Superwoman who "does a physical examination" for the plane[EB/OL]. Nanjing:WWW.XHBY.NET,2019.[2019-12-03]. http://news.xhby.net/nj/zx/201912/t20191203_6429580.shtml. [23] WANG Tianyu,XU Chao,GUO Ning. A novel frequency-labeled adaptive sparse grid collocation method for uncertainty quantification of the frequency response of general viscoelastic damping structures[J]. International Journal of Mechanical Sciences,2021,193,106168. [24] 孙洋,王彪,王巧云,等. 涂层式裂纹监测系统中基体裂纹穿越行为研究[J]. 力学学报,2015,47(5):772-778. SUN Yang,WANG Biao,WANG Qiaoyun,et al. Study of the substrate crack penetration mechanisms in crack-detected coating system[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(5):772-778. [25] 冷劲松. 光纤传感器及其在复合材料结构健康监测中的应用[J]. 中国有色金属学报,2004,14(增刊3):165-167. LENG Jinsong. Optical fiber sensor and its application in health monitoring of composite structures[J]. The Chinese Journal of Nonferrous Metals,2004,14(Suppl.3):165-167. [26] 蔡禹舜,朱昊,卿新林. 复合材料冲击损伤检测维护对SHM技术需求分析[J]. 航空制造技术,2018,61(7):78-82. CAI Yushun,ZHU Hao,QING Xinlin. Composite material impact damage detection and maintenance requirement analysis to SHM technology[J]. Aeronautical Manufacturing Technology,2018,61(7):78-82. [27] 王彬文,吕帅帅,杨宇. 基于能量图谱和孪生网络的导波损伤诊断方法[J]. 振动、测试与诊断,2021,41(1):188-195,214. WANG Binwen,LÜ Shuaishuai,YANG Yu. Guided⁃wave based damage diagnosing method with energy spectrum and siamese network[J]. Journal of Vibration,Measurement & Diagnosis,2021,41(1):188-195,214. [28] FARRELL D M,ROBBINS B J,STALLINGS J,et al. Crack growth monitoring on industrial plant using established electrical resistance scanner technology[J]. Insight-Non-Destructive Testing and Condition Monitoring,2008,50(12):690-694. [29] SHIBLI A. Remaining life assessment issues in high Cr martensitic steels and development of new innovative tools for damage monitoring and integrity assessment[J]. Transactions of the Indian Institute of Metals,2010,63(2-3):339-348. [30] KIM H W,LEE H J,KIM Y Y. Health monitoring of axially-cracked pipes by using helically propagating shear-horizontal waves[J]. NDT and E International,2012,46:115-121. [31] HONARVAR F,SALEHI F,SAFAVI V,et al. Ultrasonic monitoring of erosion/corrosion thinning rates in industrial piping systems[J]. Ultrasonics,2013,53(7):1251-1258. [32] BAGHERI A,RIZZO P,LI K. Ultrasonic imaging algorithm for the health monitoring of pipes[J]. Journal of Civil Structural Health Monitoring,2017,7(1):99-121. [33] SEN D,AGHAZADEH A,MOUSAVI A,et al. Data-driven semi-supervised and supervised learning algorithms for health monitoring of pipes[J]. Mechanical Systems and Signal Processing,2019,131:524-537. [34] TU Yun,TU Shantung. Fabrication and characterization of a metal-packaged regenerated fiber Bragg grating strain sensor for structural integrity monitoring of high-temperature components[J]. Smart Materials and Structures,2014,23(3):035001. [35] HU X Y,JIA Jiuhong,WANG Ning,et al. Design and test of an extensometer for strain monitoring of high temperature pipelines[J]. Journal of Pressure Vessel Technology,2012,134(4):044501. [36] ZHANG Hongcai,JIA Jiuhong,WANG Ning,et al. Development of on-line monitoring systems for high temperature components in power plants[J]. Sensors,2013,13(11):15504-15512. [37] JIA Ziguang,REN Liang,LI Hongnan,et al. Experimental study of pipeline leak detection based on hoop strain measurement[J]. Structural Control and Health Monitoring,2015,22(5):799-812. [38] ZHENG Mingfang,HE Cunfu,LYU Yan,et al. Guided waves propagation in anisotropic hollow cylinders by Legendre polynomial solution based on state-vector formalism[J]. Composite Structures,2019,207:645-657. [39] LIU Zenghua,LI Aili,BIN Wu,et al. Development of a wholly flexible surface wave electromagnetic acoustic transducer for pipe inspection[J]. International Journal of Applied Electromagnetics and Mechanics,2019,62(1):13-29. [40] 刘秀成,吴斌,何存富,等. 兆赫兹磁致伸缩超声导波管道检测系统的研制[J]. 失效分析与预防,2013,8(1):1-5. LIU Xiucheng,WU Bin,HE Cunfu,et al. Magnetostrictive-based megahertz-range torsional guided wave inspection system for pipeline[J]. Failure Analysis and Prevention,2013,8(1):1-5. [41] CHU S,MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature,2012,488(7411):294-303 [42] 陈雪峰,郭艳婕,许才彬,等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程,2020,31(2):175-189. CHEN Xuefeng,GUO Yanjie,XU Caibin,et al. Review of fault diagnosis and health monitoring for wind power equipment[J]. China Mechanical Engineering,2020,31(2):175-189. [43] 陈雪峰,李兵,杨志勃,等. 风电装备变转速监测诊断技术及应用[M]. 西安:西安交通大学,2015. CHEN Xuefeng,LI Bin,YANG Zhibo,et al. Monitoring and diagnosis technology of wind power equipment with variable speed[M]. Xi'an:Xi'an Jiaotong University,2015. [44] 唐新安,王海云,董昱廷,等. 风电机组故障诊断方法研究[J]. 风能,2015(3):56-59. TANG Xinan,WANG Haiyun,DONG Yuting,et al. Research on fault diagnosis method of wind turbine[J]. Wind Energy,2015(3):56-59. [45] SHINGLER R,FADIN G,UMILIACCHI P. From RCM to predictive maintenance:the InteGRail approach[C]//Institution of Engineering and Technology. 4th IET International Conference on Railway Condition Monitoring (RCM 2008),June 18-20,2008,Derby,UK:IET,2008:1-5. [46] 李莉,王璞,杨国元. 动车组故障预测与健康管理系统研究[C]//中国智能交通协会. 第十届中国智能交通年会,11月4-6日,2015,中国,江苏,无锡:中国智能交通协会,2015:463-468. LI Li,WANG Pu,YANG Guoyuan. Reasarch of prognostics and health management systems of EMU[C]//China Intelligent Transportation Systems Association. The 10th Annual Meeting of China ITS,November 4-6,2015,China,Jiangsu,Wuxi:ITS China,2015:463-468. [47] 俞展猷. 日本新干线铁路的安全技术[J]. 现代城市轨道交通,2009(3):5-8,4. YU Zhanyou. Security technology of the Japanese shinkansen railway[J]. Mordern Urban Transit,2009(3):5-8,4. [48] 梁建英. 开启智能化轨道交通装备新时代[J]. 科学,2020,72(2):4,17-22,64. LIANG Jianying. A new era of intelligent railway equipment[J]. Science,2020,72(2):4,17-22,64. [49] 梁建英. 高速列车智能诊断与故障预测技术研究[J]. 北京交通大学学报,2019,43(1):63-70. LIANG Jianying. Research on intelligent diagnosis and fault prediction technology for high speed trains[J]. Journal of Beijing Jiaotong University,2019,43(1):63-70. [50] 赵阳,徐田华,周玉平,等. 基于贝叶斯网络的高铁信号系统车载设备故障诊断方法的研究[J]. 铁道学报,2014,36(11):48-53. ZHAO Yang,XU Tianhua,ZHOU Yuping,et al. Bayesian network based fault diagnosis system for vehicle on-board equipment of high-speed railway[J]. Journal of the China Railway Society,2014,36(11):48-53. [51] HONG Ming,WANG Qiang,SU Zhongqing,et al. In situ health monitoring for bogie systems of CRH380 train on Beijing-Shanghai high-speed railway[J]. Mechanical Systems and Signal Processing,2014,45(2):378-395. [52] 刘玉梅,乔宁国,庄娇娇,等. 基于多传感器数据融合的轨道车辆齿轮箱异常检测[J]. 吉林大学学报,2019,49(5):1465-1470. LIU Yumei,QIAO Ningguo,ZHUAGN Jiaojiao,et al. Anomaly detection of rail vehicle gearbox based on multi-sensor data fusion[J]. Journal of Jilin University,2019,49(5):1465-1470. [53] 王自超,翟婉明,陈再刚,等. 考虑齿轮传动系统的重载电力机车动力学性能研究[J]. 机械工程学报,2018,54(6):48-54. WANG Zichao,ZHAI Wanming,CHEN Zaigang,et al. Dynamic performance of heavy-haul electric locomotive considering effect of gear transmission system[J]. Journal of Mechanical Engineering,2018,54(6):48-54. [54] LIU Yuqing,CHEN Zaigang,TANG Liang,et al. Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions[J]. Mechanical Systems and Signal Processing,2021,150:107257. [55] 尹福炎. 电阻应变片发展历史的回顾——纪念电阻应变片诞生70周年(1938-2008)[J]. 衡器,2009,38(4):46-52. YIN Fuyan. A review of the development history of resistance strain gauges-commemorating the 70th anniversary of the birth of resistance strain gauges (1938-2008)[J]. Weighing Instrument,2009,38(4):46-52. [56] SCHEUREN W,CALDWELL K,GOODMAN G,et al. Joint strike fighter prognostics and health management[C]//American Institute of Aeronautics and Astronautics. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,July 13-15,1998,Cleveland,OH,USA. AIAA,1998:3710. [57] OZBEK M,RIXEN D J. Operational modal analysis of a 2.5 MW wind turbine using optical measurement techniques and strain gauges[J]. Wind Energy,2013,16(3):367-381. [58] GLIŠIĆ B,YAO Y,TUNG S T E,et al. Strain sensing sheets for structural health monitoring based on large-area electronics and integrated circuits[J]. Proceedings of the IEEE,2016,104(8):1513-1528. [59] ALLMEN L V,BAILLEUL G,BECKER T,et al. Aircraft strain WSN powered by heat storage harvesting[J]. IEEE Transactions on Industrial Electronics,2017,64(9):7284-7292. [60] 周祖德,谭跃刚,刘明尧,等. 机械系统光纤光栅分布动态监测与诊断的现状与发展[J]. 机械工程学报,2013,49(19):55-69. ZHOU Zude,TAN Yuegang,LIU Mingyao,et al. Actualities and development on dynamic monitoring and diagnosis with distributed fiber Bragg grating in mechanical systems[J]. Journal of Mechanical Engineering,2013,49(19):55-69. [61] 冯昆鹏. 基于四芯锥形相移光纤光栅的三维微尺度传感方法[D]. 哈尔滨:哈尔滨工业大学,2020. FENG Kunpeng. Three-dimensional microscale sensing method based on four-core tapered phase-shifted fiber grating[J]. Harbin:Harbin Institute of Technology,2020. [62] LEE H S,LEE H,KIM H,et al. A fiber Bragg grating sensor interrogation system based on a linearly wavelength-swept thermo-optic laser chip[J]. Sensors,2014,14(9):16109-16116. [63] KAMATH G M,SUNDARAM R,GUPTA N,et al. Damage studies in composite structures for structural health monitoring using strain sensors[J]. Structural Health Monitoring,2010,9(6):497-512. [64] YAZDIZADEH Z,MARZOUK H,HADIANFARD M A. Monitoring of concrete shrinkage and creep using Fiber Bragg Grating sensors[J]. Construction and Building Materials,2017,137:505-512. [65] 岳丽娜,黄俊,姜德生. 光纤传感技术在长江二桥加固监测中的应用[J]. 武汉理工大学学报,2009,31(2):10-12. YUE Lina,HUANG Jun,JIANG Desheng. Application of optical fiber sensing technology in strengthening monitoring of Wuhan Second Yangtze River Bridge[J]. Journal of Wuhan University of Technology,2009,31(2):10-12. [66] BEARD S J,QING Xinlin,CHAN Hianleng,et al. Method and apparatus for detecting a load change upon a structure and analyzing characteristics of resulting damage:U.S. Patent 7,458,266[P]. 2008-12-02. [67] QIU Lei,YUAN Shenfang,LIU Peipei,et al. Design of an all-digital impact monitoring system for large-scale composite structures[J]. IEEE Transactions on Instrumentation and Measurement,2013,62(7):1990-2002. [68] BAPTISTA F,BUDOYA D,ALMEIDA V,et al. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring[J]. Sensors,2014,14(1):1208-1227. [69] LIN M,CHANG F K. The manufacture of composite structures with a built-in network of piezoceramics[J]. Composites Science and Technology,2002,62(7-8):919-939. [70] QIU Lei,YUAN Shenfang,SHI Xiaoling,et al. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability[J]. Smart Materials and Structures,2012,21(7):075032. [71] QIU Lei,LIN Xiaodong,WANG Yu,et al. A mechatronic smart skin of flight vehicle structures for impact monitoring of light weight and low-power consumption[J]. Mechanical Systems and Signal Processing,2020,144:106829. [72] BEKAS D G,SHARIF-KHODAEI Z,ALIABADI M H. An innovative diagnostic film for structural health monitoring of metallic and composite structures[J]. Sensors,2018,18(7):2084. [73] WÖLCKEN P C,PAPADOPOULOS M. Smart intelligent aircraft structures (SARISTU):Proceedings of the final project conference[M]. Berlin:Springer,2015. [74] WANG Yu,QIU Lei,LUO Yijie,et al. A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring[J]. Structural Health Monitoring,2021,20(3):861-876. [75] MORENO-GOMEZ A,PEREZ-RAMIREZ C A,DOMINGUEZ-GONZALEZ A,et al. Sensors used in structural health monitoring[J]. Archives of Computational Methods in Engineering,2018,25(4):901-918. [76] ROACH D. Real time crack detection using mountable comparative vacuum monitoring sensors[J]. Smart Structures and Systems,2009,5(4):317-328. [77] WISHAW M,BARTON D P. Comparative vacuum monitoring:A new method of in-situ real-time crack detection and monitoring[C]//Australian Institute For Non-Destructive Testing. Proceedings of the 10th Asia-Pacific Conference on Nondestructive Testing,September 17-21,2001,Brisbane,Australia. Brisbane:AINDT,2001:18-21. [78] ROACH D P. Application and certification of comparative vacuum monitoring sensors for structural health monitoring of 737 wing box fittings[R]. Sandia National Lab(SNL-NM),Albuquerque,NM,United States,2020. [79] 白生宝,肖迎春,刘马宝,等. 智能涂层传感器监测裂纹的工程适用性[J]. 无损检测,2015,37(1):42-44. BAI Shengbao,XIAO Yingchun,LIU Mabao,et al. Engineering applicability of monitoring crack by smart coatings sensor[J]. Nondestructive Testing,2015,37(1):42-44. [80] SUN Yang,WANG Wenjuan,LI Binbin,et al. Investigation on behavior of crack penetration/deflection at interfaces in intelligent coating system[J]. Applied Mathematics and Mechanics,2015,36(4):465-474. [81] LANZARA G,FENG J,CHANG F K. Design of micro-scale highly expandable networks of polymer-based substrates for macro-scale applications[J]. Smart Materials and Structures,2010,19(4):045013. [82] KOPSAFTOPOULOS F,NARDARI R,LI Y H,et al. A stochastic global identification framework for aero-space structures operating under varying flight states[J]. Mechanical Systems and Signal Processing,2018,98:425-447. [83] YANG Y,CHIESURA G,PLOVIE B,et al. Design and integration of flexible sensor matrix for in situ monitoring of polymer composites[J]. ACS Sensors,2018,3(9):1698-1705. [84] LANCE R,ALLENN P,ANTHONY P,et al. national aeronautics and space administration NASA Armstrong Flight Research Center (AFRC) fiber optic sensing system (Foss) technology[EB/OL].[2015-01-12]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150000314.pdf [85] OGISU T,SHIMANUKI M,YONEDA H,et al. Damage growth monitoring for a bonding layer of the aircraft bonding structure[C]//Society of Photo-Optical Instrumentation Engineers. International Society for Optical Engineering. Smart Structures and Materials 2006:Industrial and Commercial Applications of Smart Structures Technologies,February 27-28,2006,San Diego,California,USA. Washington:SPIE,2006:6171. [86] 李政颖,周祖德,童杏林,等. 高速大容量光纤光栅解调仪的研究[J]. 光学学报,2012,32(3):60-65. LI Zhengying,ZHOU Zude,TONG Xinglin,et al. Research of high-speed large-capacity fiber Bragg grating demodulator[J]. Acta Optica Sinica,2012,32(3):60-65. [87] JIN Xin,YUAN Shenfang,CHEN Jian. On crack propagation monitoring by using reflection spectra of AFBG and UFBG sensors[J]. Sensors and Actuators A:Physical,2019,285:491-500. [88] 陈道云,王斌杰,肖乾,等. 高速列车转向架构架损伤、等效应力及寿命分布特性研究[J]. 机械工程学报,2020,56(22):237-246. CHEN Daoyun,WANG Binjie,XIAO Qian,et al. Study on damage,equivalent stress and life distribution characteristics of bogie frame of high-speed train[J]. Journal of Mechanical Engineering,56(22):237-246. [89] 杨龙,杨冰,阳光武,等. 点焊接头疲劳研究综述[J].机械工程学报,2020,56(14):26-43. YANG Long,YANG Bing,YANG Guangwu,et al. Overview of fatigue research of spot welded joints[J]. Journal of Mechanical Engineering,2020,56(14):26-43. [90] 孟宪凯. 激光温喷丸强化航空轻质合金的振动模态及疲劳延寿机理[D]. 镇江:江苏大学,2017. MENG Xiankai. Vibration mode and fatigue life prolonging mechanism of aviation light alloy strengthened by laser warm shot peening[D]. Zhenjiang:Jiangsu University,2017. [91] ARANGUREN G,MONJE P M,COKONAJ V,et al. Ultrasonic wave-based structural health monitoring embedded instrument[J]. Review of Scientific Instruments,2013,84(12):29-34. [92] MENG S,ALIABADI M. Automation using matrix switch for piezoelectric actuator/sensor based structural health monitoring[J]. Key Engineering Materials,2015,627:213-216. [93] FINDA J,VALENTOVA V,HEDL R. Experience with on-board SHM system testing on small commuter aircraft[C]//Stanford University. The 12th International Workshop on Structural Health Monitoring,Sept 10-12,2019,Stanford,United State. Stanford:Stanford University,2019:32110. [94] FANG Fang,QIU Lei,YUAN Shenfang,et al. Dynamic probability modeling-based aircraft structural health monitoring framework under time-varying conditions:Validation in an in-flight test simulated on ground[J]. Aerospace Science and Technology,2019,95:105467. [95] KESSLER S S,FLYNN E B. Hybrid passive/active impact detection & localization for aerospace structures[J]. Structural Health Monitoring,2013,1-2:2325-2332. [96] LI P,OLMI C,SONG G. Energy efficient wireless sensor network for structural health monitoring using distributed embedded piezoelectric transducers[C]//Society of Photo-Optical Instrumentation Engineers. Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems 2010,March 8-11,2010,San Diego,California,USA. New York:SPIE,2010:764715. [97] TESTONI N,MARCHI L D,MARZANI A. A stamp size,40mA,5 grams sensor node for impact detection and location[C]//EWSHM. The 8th European Workshop on Structural Health Monitoring,July 5-8,2016,Bilbao,Spain. Bilbao:EWSHM,2016:1-8. [98] FU H,KHODAEI Z S,ALIABADI M H F. An event-triggered energy-efficient wireless structural health monitoring system for impact detection in composite airframes[J]. IEEE Internet of Things Journal,2018,6(1):1183-1192. [99] QIU Lei,LIN Xiaodong,YUAN Shenfang,et al. A lightweight system with ultralow-power consumption for on-line continuous impact monitoring of aerospace vehicle structures[J]. IEEE Transactions on Industrial Electronics,2021,68(6):5281-5292. [100] MENON S,LEWIS S,JIRACEK R. Method to track corrosion environment in aircraft[R]. Charlotte,North Carolina,US:Honeywell Inc Minneapolis Mn Honeywelllaboratories,2001. [101] COLE I S,CORRIGAN P A,GANTHER W,et al. Development of a sensor-based learning approach to prognostics in intelligent vehicle health monitoring[C]//Institute of Electrical and Electronics Engineers. International Conference on Prognostics and Health Management:IEEE,October 6-92008,Denver,Colorado,USA. New York:IEEE,2008:1-7. [102] Luna Innovations Incorporated. Smart sensor hub for aircraft corrosion monitoring[EB/OL].[2021-02-12]. www.lunaintelligentsystems.com. [103] Impact Technologies,CorrSem™ corrosion monitoring system[EB/OL].[2020-08-25]. www.impact-tek.com/Resources/SellSheetPDFs/CorrSem.pdf. [104] SMITHARD J,RAJIC N,VELDEN S,et al. An advanced multi-sensor acousto-ultrasonic structural health monitoring system:development and aerospace demonstration[J]. Materials,2017,10(7):832. [105] KATUNIN A,DRAGAN K,DZIENDZIKOWSKI M. Damage identification in aircraft composite structures:A case study using various non-destructive testing techniques[J]. Composite Structures,2015,27:1-9. [106] SU Zhongqing,YE Lin,LU Ye. Guided Lamb waves for identification of damage in composite structures:A review[J]. Journal of Sound and Vibration,2006,295(3-5):753-780. [107] SU Zhongqing,YE Lin. Identification of damage using Lamb waves:From fundamentals to applications[M]. Berlin,Germany:Springer Science and Business Media,2009. [108] OSTACHOWICZ W,GÜEMES A. New trends in structural health monitoring[M]. Berlin,Germany:Springer Science and Business Media,2013. [109] HALL J S,MCKEON P,SATYANARAYAN L,et al. Minimum variance guided wave imaging in a quasi-isotropic composite plate[J]. Smart Materials and Structures,2011,20(2):025013. [110] QING X L P,BEARD S,SHEN S B,et al. Development of a real-time active pipeline integrity detection system[J]. Smart Materials and Structures,2009,18(11):115010. [111] MORI N,BIWA S,KUSAKA T. Damage localization method for plates based on the time reversal of the mode-converted Lamb waves[J]. Ultrasonics,2019,91:19-29. [112] QIU Lei,YUAN Shenfang. A phase synthesis time reversal impact imaging method for on-line composite structure monitoring[J]. Smart Structures and Systems,2011,8(3):303-320. [113] PUREKAR A S,PINES D J. Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided Lamb wave interrogation[J]. Journal of Intelligent Material Systems and Structures,2010,21(10):995-1010. [114] 王瑜,袁慎芳,邱雷. 基于改进空间滤波器的复合材料结构损伤成像方法[J]. 复合材料学报,2011,28(1):186-193. WANG Yu,YUAN Shenfang,QIU Lei. Improved spatial filter based damage imaging method on composite structures[J]. Acta Materiae Compositae Sinica,2011,28(1):186-193. [115] 刘彬,邱雷,袁慎芳,等. 基于多维阵列和空间滤波器的损伤无波速成像定位方法[J]. 复合材料学报,2014,31(3):835-844. LIU Bin,QIU Lei,YUAN Shenfang,et al. Damage imaging and localization method based on multi-dimension arrays and spatial filter without wave velocity[J]. Acta Materize Compositae Sinica,2014,31(3):835-844. [116] QIU Lei,LIU Bin,YUAN Shenfang,et al. Impact imaging of aircraft composite structure based on a model-independent spatial-wavenumber filter[J]. Ultrasonics,2016,64:10-24. [117] REN Yuanqiang,QIU Lei,YUAN Shenfang,et al. A diagnostic imaging approach for online characterization of multi-impact in aircraft composite structures based on a scanning spatial-wavenumber filter of guided wave[J]. Mechanical Systems and Signal Processing,2017,90:44-63. [118] ENGHOLM M,STEPINSKI T. Direction of arrival estimation of Lamb waves using circular arrays[J]. Structural Health Monitoring. 2011,10(5):467-480. [119] YUAN Shenfang,ZHONG Yongteng,QIU Lei,et al. Two-dimensional near-field multiple signal classification algorithm-based impact localization[J]. Journal of Intelligent Material Systems and Structures,2015,26(4):703-704. [120] BAO Qiao,YUAN Shenfang,WANG Yanwen,et al. Anisotropy compensated MUSIC algorithm based composite structure damage imaging method[J]. Composite Structures,2019,214:293-303. [121] 邓菲,刘洋,诸葛霞,等. 变化环境下的超声导波结构健康监测研究进展[J]. 机械工程学报,2016,52(18):1-7. DENG Fei,LIU Yang,ZHUGE Xia,et al. Progress on the research of ultrasonic guided wave structural health monitoring in the changing ambient[J]. Journal of Mechanical Engineering,2016,52(18):1-7. [122] LU Y,MICHAELS J E. A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations[J]. Ultrasonics,2005,43(9):717-731. [123] WANG Geng,WANG Yuhang,SUN Hu,et al. A reference matching-based temperature compensation method for ultrasonic guidedwave signals[J]. Sensors,2019,19(23):5174. [124] ANTON S R,INMAN D J,PARK G. Reference-free damage detection using instantaneous baseline measurements[J]. AIAA Journal,2009,47(8):1952-1964. [125] WANG Qiang,YUAN Shenfang. Baseline-free imaging method based on new PZT sensor arrangements[J]. Journal of Intelligent Material Systems and Structures,2009,20(14):1663-1673. [126] KIM E J,KIM M K,SOHN H,et al. Investigating electro-mechanical signals from collocated piezoelectric wafers for the reference-free damage diagnosis of a plate[J]. Smart Materials and Structures,2011,20(6):065001. [127] AGRAHARI J K,KAPURIA S. Active detection of block mass and notch-type damages in metallic plates using a refined time-reversed Lamb wave technique[J]. Structural Control and Health Monitoring,2018,25(2):e2064. [128] WU Weiliang,QU Wenzhong,XIAO Li,et al. Detection and localization of fatigue crack with nonlinear instantaneous baseline[J]. Journal of Intelligent Material Systems and Structures,2016,27(12):1577-1583. [129] CROSS E J,WORDEN K. Cointegration and why it works for SHM[C]//Institute of Physics. Modern Practice in Stress and Vibration Analysis 2012(MPSVA 2012),August 29-31,2012,Glasgow,Scotland:IOP,2012:012046. [130] CROSS E J,WORDEN K,CHEN Q. Cointegration:a novel approach for the removal of environmental trends in structural health monitoring data[J]. Proceedings of the Royal Society A,2011,467(2133):2712-2732. [131] SALVETTI M,SBARUFATTI C,CROSS E,et al. On the performance of a cointegration-based approach for novelty detection in realistic fatigue crack growth scenarios[J]. Mechanical Systems and Signal Processing,2019,123:84-101. [132] 姜洪开,邵海东,李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报,2019,55(7):27-34. JIANG Hongkai,SHAO Haidong,LI Xingqiu. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering,2019,55(7):27-34. [133] DATTA A,AUGUSTIN M J,GUPTA N,et al. Impact localization and severity estimation on composite structure using fiber Bragg grating sensors by least square support vector regression[J]. IEEE Sensors Journal,2019,19(12):4463-4470. [134] LIU C,DOBSON J,CAWLEY P. Efficient generation of receiver operating characteristics for the evaluation of damage detection in practical structural health monitoring applications[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2017,473(2199):20160736. [135] QIU Lei,YUAN Shenfang,HUANG Tianxiang. Lamb wave temperature compensation method based on adaptive filter ADALINE network[J]. Journal of Vibroengineering,2013,15(3):1463-1476. [136] BANERJEE S,QING X P,BEARD S,et al. Prediction of progressive damage state at the hot spots using statistical estimation[J]. Journal of Intelligent Material Systems and Structures,2010,21(6):595-605. [137] QIU Lei,YUAN Shenfang,CHANG F K,et al. On-line updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary condition[J]. Smart Materials and Structures,2014,23(12):125001. [138] QIU Lei,FANG Fang,YUAN Shenfang,et al. An enhanced dynamic Gaussian mixture model-based damage monitoring method of aircraft structures under environmental and operational conditions[J]. Structural Health Monitoring,2019,18(2):524-545. [139] QIU Lei,FANG Fang,YUAN Shenfang. Improved density peak clustering-based adaptive Gaussian mixture model for damage monitoring in aircraft structures under time-varying conditions[J]. Mechanical Systems and Signal Processing,2019,126:281-304. [140] BARROSO L R,RODRIGUEZ R. Damage detection utilizing the damage index method to a benchmark structure[J]. Journal of Engineering Mechanics,2004,130(2):142-151. [141] SALAWU O S. Detection of structural damage through changes in frequency:A review[J]. Engineering Structures,1997,19(9):718-723. [142] CAWLEY P,ADAMS R D. The location of defects in structures from measurements of natural frequencies[J]. The Journal of Strain Analysis for Engineering Design,1979,14(2):49-57. [143] HWANG H Y,KIM C. Damage detection in structures using a few frequency response measurements[J]. Journal of Sound and Vibration,2004,270(1-2):1-14. [144] LI Hui,HUANG Yong,OU Jinping,et al. Fractal dimension-based damage detection method for beams with a uniform cross-section[J]. Computer-Aided Civil and Infrastructure Engineering,2011,26(3):190-206. [145] WANG Shuqing. Damage detection in offshore platform structures from limited modal data[J]. Applied Ocean Research,2013,41:48-56. [146] SHI Z Y,LAW S S,ZHANG L M. Structural damage localization from modal strain energy change[J]. Journal of Sound and Vibration,1998,218(5):825-844. [147] CORNWELL P,DOEBLING S W,FARRAR C R. Application of the strain energy damage detection method to plate-like structures[J]. Journal of Sound and Vibration,1999,224(2):359-374. [148] DAWARI V B,KAMBLE P P,VESMAWALA G R. Structural damage identification using modal strain energy method[M]//Advances in Structural Engineering. New Delhi:Springer,2015. [149] LOPEZ I,SARIGUL-KLIJN N. A review of uncertainty in flight vehicle structural damage monitoring,diagnosis and control:Challenges and opportunities[J]. Progress in Aerospace Sciences,2010,46(7):247-273. [150] SOHN H,LAW K H. A Bayesian probabilistic approach for structure damage detection[J]. Earthquake Engineering and Structural Dynamics,1997,26(12):1259-1281. [151] BECK J L,YUEN K V. Model selection using response measurements:Bayesian probabilistic approach[J]. Journal of Engineering Mechanics,2004,130(2):192-203. [152] DONG Yuliang,FANG Fang,GU Yujiong. Dynamic evaluation of wind turbine health condition based on Gaussian mixture model and evidential reasoning[J]. Journal of Renewable and Sustainable Energy,2013,5(3):033117. [153] KOPSAFTOPOULOS F P,FASSOIS S D. A functional model based statistical time series method for vibration based damage detection,localization,and magnitude estimation[J]. Mechanical Systems and Signal Processing,2013,39:143-161. [154] DAO P B,STASZEWSKI W J,BARSZCZ T,et al. Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data[J]. Renewable Energy,2018,116:107-122. [155] LIANG C,SUN F P,ROGERS C A. An impedance method for dynamic analysis of active material systems[J].Journal of Intelligent Material Systems and Structures,1997,8(4):323-334. [156] 吴斌,佟啸腾,刘增华,等. 基于机电阻抗技术的管道法兰结构健康监测实验研究[J]. 实验力学,2010,25(5):516-521. WU Bin,TONG Xiaoteng,LIU Zenghua,et al. Experimental study of structural health monitoring for pipeline flange based on electromechanical impedance[J]. Journal of Experimental Mechanics,2010,25(5):516-521. [157] SUN F P,CHAUDHRY Z,LIANG C,et al. Truss structure integrity identification using PZT sensor-actuator[J]. Journal of Intelligent Material Systems and Structures,1995,6(1):134-139. [158] LOPES V,PARK G,CUDNEY H,et al.Impedance-based structural health monitoring with artificial neural networks[J].Journal of Intelligent Material Systems and Structures,2000,11(3):206-214. [159] MIN J,PARK S,YUN C,et al. Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity[J].Engineering Structures,2012,39:210-220. [160] 沈星,吕娟,章建文,等. 基于压电阻抗技术和BP网络的结构健康监测[J]. 南京航空航天大学学报,2010,42(4):418-422. SHEN Xing,LÜ Juan,ZHANG Jianwen,et al. Experiment of structural health monitoring based on piezoelectric impedance technology and BP network[J]. Journal of Nanjing University of Aeronautics and Astronautics,2010,42(4):418-422. [161] 何存富,杨申,刘增华,等. 基于神经网络技术的管道机电阻抗健康状况定量评估研究[J]. 实验力学,2013,28(1):20-26. HE Cunfu,YANG Shen,LIU Zenghua,et al. Study of electromechanical impedance quantitative evaluation for pipeline structure based on neural network technique[J]. Journal of Experimental Mechanics,2013,28(1):20-26. [162] 曹俊,袁慎芳,蔡建,等. 疲劳裂纹扩展的实时健康监测[J]. 压电与声光,2008(6):776-778. CAO Jun,YUAN Shenfang,CAI Jian,et al. Real-time structural health monitoring for fatigue crack growth.[J]. Piezoelectrics and Acoustooptics,2008(6):776-778. [163] 刘增华,曹瑾瑾,吴斌,等. 基于机电阻抗与超声导波综合技术的复合材料板损伤定位[J]. 北京工业大学学报,2018,44(5):699-707. LIU Zenghua,CAO Jinjin,WU Bin,et al. Damage location of composite plates using integrated technology based on electromechanical impedance and ultrasonic guided waves[J]. Journal of Beijing University of Technology,2018,44(5):699-707. [164] 张勇,周昀芸,王博,等. 基于声发射信号的铝合金点焊裂纹神经网络监测[J]. 机械工程学报,2016,52(16):1-7. ZHANG Yong,ZHOU Yunyun,WANG Bo,et al. Neural network monitoring of aluminum alloy spot welding crack based on acoustic emission signal[J]. Journal of Mechanical Engineering,2016,52(16):1-7. [165] 沈功田,万耀光,段庆儒,等. 集束式高压氢气钢瓶的声发射在线监测和安全评定[J]. 中国锅炉压力容器安全,1997,13(2):36-38. SHEN Gongtian,WAN Yaoguang,DUAN Qingru,et al. On-line acoustic emission monitoring and safety evaluation of cluster high pressure hydrogen cylinders[J]. China Boiler and Pressure Vessel Safety,1997,13(2):36-38. [166] 王忠民,王信义,杨大勇,等. 刀具磨损状态在线监测技术[J]. 制造技术与机床,2000(6):43-44,3. WANG Zhongmin,WANG Xinyi,YANG Dayong,et al. On-line monitoring technique for cutting tool wear states[J]. Manufacturing Technology and Machine Tool,2000(6):43-44,3. [167] 何鹏举,刘刚易,折廷廷. 单通道AE信号盲分离的飞机构件监测方法研究[J]. 仪器仪表学报,2018,39(8):34-42. HE Pengju,LIU Gangyi,SHE Tingting. Research on monitoring of aircraft structural components basedon blindseparation of single channel AE signal[J]. Chinese Journal of Scientific Instrument,2018,39(8):34-42. [168] ANG Huaqian. An overview of self-piercing riveting process with focus on joint failures,corrosion issues and optimisation techniques[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-25. [169] 曾凡阳,刘元海,丁玉洁. 海洋环境下军用飞机腐蚀及其系统控制工程[J]. 装备环境工程,2014,10(6):77-81. ZENG Fanyang,LIU Yuanhai,DING Yujie. Research on corrosion and system engineering control technology of military aircraft in marine environment[J]. Equipment Environmental Engineering,2014,10(6):77-81. [170] BINGHAM J,HINDERS M. Lamb wave characterization of corrosion-thinning in aircraft stringers:Experiment and three-dimensional simulation[J]. Journal of the Acoustical Society of America,2009,126(1):103-113. [171] YU L,GIURGIUTIU V. Piezoelectric wafer active sensors in Lamb wave-based structural health monitoring[J]. JOM,2012,64(7):814-822. [172] 魏勤,骆英. 液层负载作用下薄板中腐蚀的Lamb波检测[J]. 振动.测试与诊断,2013,33(增刊1):41-44. WEI Qin,LUO Ying. Corrosion detection of Lamb waves in plate bordered with liquid layers[J]. Journal of Vibration,Measurement and Diagnosis,2013,33(Suppl.1):41-44. [173] HUTHWAITE P,RIBICHINI R,CAWLEY P,et al. Mode selection for corrosion detection in pipes and vessels via guided wave tomography[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2013,60(6):1165-1177. [174] ZENG Liang,LUO Zhi,LIN Jing,et al. Excitation of Lamb waves over a large frequency-thickness product range for corrosion detection[J]. Smart Materials and Structures,2017,26(9):095012. [175] FROMME P,BERNHARD F,MASSEREY B. High-frequency guided ultrasonic waves to monitor corrosion thickness loss[J]. AIP Conference Proceedings,2017,1806(1):030006. [176] SRIRAMADASU R C,BANERJEE S,LU Y. Detection and assessment of pitting corrosion in rebars using scattering of ultrasonic guided waves[J]. NDT and E International,2019,101:53-61. [177] BAO Qiao,YUAN Shenfang,GUO Fangyu,et al. Transmitter beamforming and weighted image fusion-based multiple signal classification algorithm for corrosion monitoring[J]. Structural Health Monitoring,2019,18(2):621-634. [178] GHERLONE M,CERRACCHIO P,MATTONE M. Shape sensing methods:Review and experimental comparison on a wing-shaped plate[J]. Progress in Aerospace Sciences,2018,99:14-26. [179] 米红林. 基于云纹干涉法的复合材料应变检测技术[J]. 激光杂志,2012,33(6):20-21. MI Honglin. Strain measurement technology of composite materials by moiré interferometry method[J]. Laser Journal,2012,33(6):20-21. [180] 宋育林,白旭东,陈小奇,等. 数字图像相关法焊接热影响区应变原位测量及应力计算[J]. 机械工程学报,2019,55(17):29-34. SONG Yulin,BAI Xudong,CHEN Xiaoqi,et al. Calculation and in-situ measurement of haz stress based on digital image correlation method[J]. Journal of Mechanical Engineering,2019,55(17):29-34. [181] TESSLER A,DI S M,GHERLONE M. A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics[J]. Journal of Mechanics of Materials and Structures,2010,5(2):341-367. [182] GHERLONE M,CERRACCHIO P,MATTONE M,et al. An inverse finite element method for beam shape sensing:theoretical framework and experimental validation[J]. Smart Materials and Structures,2014,23(4):045027. [183] FOSS G C,HAUGSE E D. Using modal test results to develop strain to displacement transformations[C]//Society of Photo-Optical Instrumentation Engineers. Proceedings of SPIE-The International Society for Optical Engineering,June 5-7,1995,Tokyo,Japan. Washington:SPIE,1995:112. [184] KIM H I,KANG L H,HAN J H. Shape estimation with distributed fiber Bragg grating sensors for rotating structures[J]. Smart Materials and Structures,2011,20(3):035011. [185] RAPP S,KANG L H,HAN J H,et al. Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors[J]. Smart Materials and Structures,2009,18(2):025006. [186] KO W L,RICHARDS W L,FLEISCHER V T. Applications of Ko displacement theory to the deformed shape predictions of the doubly-tapered Ikhana Wing[R]. NASA/TP,2009:214652. [187] 袁慎芳,闫美佳,张巾巾,等. 一种适用于梁式机翼的变形重构方法[J]. 南京航空航天大学学报,2014,46(6):825-830. YUAN Shenfang,YAN Meijia,ZHANG Jinjin,et al. Shape reconstruction method of spar wing structure[J]. Journal of Nanjing University of Aeronautics and Astronautics,2014,46(6):825-830. [188] QIU Lei,YUAN Shenfang,BOLLER C. An adaptive guided wave-Gaussian mixture model for structural damage monitoring under time-varying conditions:Validation in a full-scale aircraft fatigue test[J]. Structural Health Monitoring,2017,16(5):501-517. [189] 肖飚,杨斌,胡超杰,等. 基于埋入式应变片的纤维缠绕压力容器的健康监测[J]. 高压物理学报,2019,33(4):54-60. XIAO Biao,YANG Bin,HU Chaojie,et al. Structural health monitoring of filament wound pressure vesselby embedded strain gauges[J]. Chinese Journal of High Pressure Physics,2019,33(4):54-60. [190] MORITZ W. HÄCKELL,ROLFES R,et al. Three-Tier modular structural health monitoring framework using environmental and operational condition clustering for data normalization:validation on an operational wind turbine system[J]. Proceedings of the IEEE,2016,104(8):1632-1646. [191] 苏众庆,洪铭,王强. 高铁列车Lamb波结构健康监测技术与系统验证[C]//中国自动化学会控制理论专业委员会. 第三十二届中国控制会议,7月26-28日,2013,中国,西安:西北工业大学,2013:1340-1345. SU Zhongqing,HONG Ming,WANG Qiang. Health monitoring technology and system verification of Lamb wave structure of high-speed train[C]//Technical Committee on Control Theory,Chinese Association of Automation. 32th Chinese Control Conference,July 26-28,2013,Xian,China:Northwestern Polytechnical University,2013:1340-1345. [192] HONG Ming,WANG Qiang,SU Zhongqing,et al. In situ health monitoring for bogie systems of CRH380 train on Beijing-Shanghai high-speed railway[J]. Mechanical Systems and Signal Processing,2014,45(2):378-395. |
[1] | 孙仕林, 王天杨, 褚福磊. 基于振动及声学测量的风电叶片结构健康监测研究综述[J]. 机械工程学报, 2024, 60(7): 79-92. |
[2] | 俞水, 吴晓, 郭鹏, 王志华. 基于首次穿越PDF自适应估计的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(5): 264-275. |
[3] | 李莹, 张嘉方, 张钊墉, 王鑫丞, 张晋, 孔祥东. 斜盘式轴向柱塞泵柱塞颈部最小直径设计[J]. 机械工程学报, 2024, 60(4): 430-437. |
[4] | 钱萍, 刘鑫雨, 陈文华, 王哲, 郭明达. 电连接器用聚氨酯胶密封件贮存可靠性建模[J]. 机械工程学报, 2024, 60(20): 361-371. |
[5] | 韦新鹏, 姚中洋, 宝文礼, 张哲, 姜潮. 一种基于主动学习克里金模型的证据理论可靠性分析方法[J]. 机械工程学报, 2024, 60(2): 356-368. |
[6] | 王文林, 张子波, 李英子, 吴永明, 王起新, 梁若霜. 液压缸可靠性试验与数据分析研究平台[J]. 机械工程学报, 2024, 60(18): 385-393. |
[7] | 陈健, 孟义兴, 袁慎芳, 徐秋慧, 王卉. 融合导波监测的搭接结构裂纹扩展寿命孪生预测[J]. 机械工程学报, 2024, 60(16): 34-42. |
[8] | 任元强, 严嘉慧, 袁慎芳, 张巾巾. 时变影响下导波健康HMM的损伤定量诊断方法[J]. 机械工程学报, 2024, 60(16): 54-61. |
[9] | 杨旭锋, 程鑫, 刘泽清. 一种融合交叉熵自适应抽样与ALK模型的可靠性分析方法[J]. 机械工程学报, 2024, 60(16): 73-82. |
[10] | 胡俊宇, 韩旭, 陶友瑞, 李珊瑚, 张建宁. 一种考虑跟随误差的S形轨迹残余振动抑制可靠性分析方法[J]. 机械工程学报, 2024, 60(16): 390-399. |
[11] | 胡伟飞, 廖家乐, 郭云飞, 鄢继铨, 李光, 岳海峰, 谭建荣. 基于物理信息神经网络的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(13): 141-153. |
[12] | 张显程, 谷行行, 刘宇, 王润梓, 宋鲁凯, 谢里阳, 赵丙峰, 夏侯唐凡, 李勇, 孙莉, 温建锋, 涂善东. 基于工程损伤理论的高温装备可靠性评估与运维管理[J]. 机械工程学报, 2024, 60(13): 154-172. |
[13] | 常琦, 周长聪, 刘付超, 张浩, 岳珠峰. 考虑铰接间隙区间不确定性的飞机舱门锁机构可靠性分析[J]. 机械工程学报, 2023, 59(8): 264-272. |
[14] | 范小宁, 王凯, 余畅. 基于约束边界抽样的起重机金属结构可靠性优化[J]. 机械工程学报, 2023, 59(8): 288-298. |
[15] | 宋守许, 庞少聪, 周丹, 田永廷. 考虑可靠性与回收再利用性的直流充电桩设计过程关键部件识别方法[J]. 机械工程学报, 2023, 59(7): 18-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||