机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 293-305.doi: 10.3901/JME.2021.16.293
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
聂祥樊1,2, 李应红1, 何卫锋1, 罗思海1, 周留成1
收稿日期:
2020-09-01
修回日期:
2021-01-24
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
李应红(通信作者),男,1963年出生,教授,博士研究生导师,重点实验室主任,中国科学院院士。主要研究方向为航空(动力)与等离子体技术交叉。E-mail:yinghong_li@126.com
作者简介:
聂祥樊,男,1988年出生,副教授,硕士研究生导师,重点实验室主任助理。主要研究方向为激光冲击强化及应用关键技术。E-mail:skingkgd@163.com
基金资助:
NIE Xiangfan1,2, LI Yinghong1, HE Weifeng1, LUO Sihai1, ZHOU Liucheng1
Received:
2020-09-01
Revised:
2021-01-24
Online:
2021-08-20
Published:
2021-11-16
摘要: 航空发动机部件服役环境恶劣、工作载荷复杂,容易发生高周疲劳断裂,严重影响发动机安全可靠性。激光冲击强化是一种新兴的表面塑性强化技术,可通过残余压应力预制和微观组织改善显著提升金属材料高周疲劳性能,已在航空发动机部件生产和修理中实现了批量化应用。将深入讨论风扇/压气机叶片、涡轮叶片、涡轮盘、机匣、作动筒、导管、齿轮等部件激光冲击强化研究进展和应用情况及有待解决的问题,分析总结近年来航空发动机部件激光冲击强化研究历程及特点,并就未来设备、机理、工艺和应用等方面研究进行展望,希望通过全行业、全技术链的力量创新协同,推动激光冲击强化技术在我国航空发动机部件上的规模化工业应用。
中图分类号:
聂祥樊, 李应红, 何卫锋, 罗思海, 周留成. 航空发动机部件激光冲击强化研究进展与展望[J]. 机械工程学报, 2021, 57(16): 293-305.
NIE Xiangfan, LI Yinghong, HE Weifeng, LUO Sihai, ZHOU Liucheng. Research Progress and Prospect of Laser Shock Peening Technology in Aero-engine Components[J]. Journal of Mechanical Engineering, 2021, 57(16): 293-305.
[1] PEYRE P,FABBRO R. Laser shock processing of aluminum alloys:Application to high cycle fatigue behaviour[J]. Materials Science & Engineering A,1996,210:102-113. [2] HATAMLEH O,SINGH P M,GARMESTANI H. Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints[J]. Corrosion Science,2009,51:135-143. [3] BARLETTA M,RUBINO G,GISARIO A. Adhesion and wear resistance of CVD diamond coatings on laser treated WC-Co substrates[J]. Wear,2011,271:201-2024. [4] Universal Technology Corporation. High cycle fatigue (HCF) science and technology program 2002 annual report[R]. Dayton:Air Force Research Laboratory,2003:1-10. [5] COWLES B,MORRIS B,NAIK R,et al. Applications,benefits,and challenges of advanced surface treatments surface treatments-an industry perspective[C]//Proceeding of the First International Conference on Laser Peening,Houston:ASME Press,2008:30-31. [6] MONTROSS C S,WEI T,YE L,et al. Laser shock processing and its effects on microstructure and properties of metal alloys:A review[J]. International Journal of Fatigue,2002,24:1021-1036. [7] SHEPARD M J,SMITH P R,AMER M S. Introduction of compressive residual stresses in Ti-6Al-4V simulated airfoils via laser shock processing[J]. Journal of Materials Engineering and Performance,2001,10:670-678. [8] DING K,YE L. Laser shock peening performance and process simulation[M]. New York:Woodhead,2006. [9] FANG Y W,LI Y H,HE W F,et al. Effects of laser shock processing with different parameters and ways on residual stresses fields of a TC4 alloy blade[J]. Materials Science & Engineering A,2013,559:683-692. [10] ZHANG X C,ZHANG Y K,LU J Z,et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science & Engineering A,2010,527(15):3411-3415. [11] JIA W J,HONG Q,ZHAO H Z,et al. Effect of laser shock peening on the mechanical properties of a near-α titanium alloy[J]. Materials Science & Engineering A,2014,606:354-359. [12] YANG H,ZHAO J B,WANG T R. Research on a different method to reach the saturate limit of titanium aluminide alloy surface mechanical and fatigue properties by laser shock process[J]. Optik-International Journal for Light and Electron Optics,2019,193:162989. [13] BHAMARE S,RAMAKRISHNAN G,MANNAVA S R,et al. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surface & Coatings Technology,2013,232:464-474. [14] 刘亮,聂祥樊,胡仁高,等. 激光冲击强化对TC17钛合金模拟叶片疲劳极限的影响[J]. 燃气涡轮试验与研究,2019,32(4):48-52. LIU Liang,NIE Xiangfan,HU Rengao,et al. The effects of laser shock processing on the fatigue limit of TC17 alloy simulated blades[J]. Gas Turbine Experiment and Research,2019,32(4):48-52. [15] ALTENBERGER I,NALLA R K,SANO Y,et al. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550℃[J]. International Journal of Fatigue,2012,44:292-302. [16] NIE X F,HE W F,ZHOU L C,et al. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance[J]. Materials Science & Engineering A,2014,594:161-167. [17] NIE X F,HE W F,ZANG S L,et al. Effects and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface & Coating Technology,2014,253:68-75. [18] NIE X F,HE W F,LI Q P,et al. Experiment investigation on microstructure and mechanical properties of TC17 titanium alloy treated by laser shock peening with different laser fluence[J]. Journal of Laser Application,2013,25(4):042001-1-6. [19] 聂祥樊,何卫锋,王学德,等. 激光冲击强化对TC17钛合金微观组织和力学性能的影响[J]. 稀有金属材料与工程,2014,43(7):1691-1696. NIE Xiangfan,HE Weifeng,WANG Xuede,et al. Effects of laser shock peening on microstructure and mechanical properties of TC17 titanium alloy[J]. Rare Metal Materials and Engineering,2014,43(7):1691-1696. [20] PAN X L,LI X,ZHOU L C,et al. Effect of residual stress on s-n curves and fracture morphology of Ti6Al4V titanium alloy after laser shock peening without protective coating[J]. Materials,2019,12:3799. [21] JIAO Y,HE W F,SHEN X J. Enhanced high cycle fatigue resistance of Ti-17 titanium alloy after multiple laser peening without coating[J]. The International Journal of Advanced Manufacturing Technology,2019,104:1333-1343. [22] 李媛,何卫锋,聂祥樊,等. 激光冲击TC17钛合金疲劳裂纹扩展试验[J]. 中国表面工程,2017,30(3):40-47. LI Yuan,HE Weifeng,NIE Xiangfan,et al. Fatigue crack growth behavior of TC17 titanium alloy with laser shock peening[J]. China Surface Engineering,2017,30(3):40-47. [23] SUN R J,LI L H,GUO W,et al. Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J]. Materials Science & Engineering A,2018,737:94-104. [24] LUO Y J,CHEN J B,WANG X F,et al. A micromechanical model to study the closure stress effect on fatigue life of Ti6Al4V subjected to laser shock peening[J]. Engineering Fracture Mechanics,2018,200:327-338. [25] ZABEEN S,PREUSS M,WITHERS P J. Residual stresses caused by head-on and 45° foreign object damage for a laser shock peened Ti-6Al-4V alloy aerofoil[J]. Materials Science & Engineering A,2013,560:518-527. [26] ZABEEN S,PREUSS M,WITHERS P J. Evolution of a laser shock peened residual stress field locally with foreign object damage and subsquent fatigue crack growth[J]. Acta Materialia,2015,83:216-226. [27] LIN B,LUPTON C,SPANRAD S,et al. Fatigue crack growth in laser-shock-peened Ti-6Al-4V aerofoil specimens due to foreign object damage[J]. International Journal of Fatigue,2014,59:23-33. [28] LIN B,ZABEEN S,TONG J,et al. Residual stressed due to foreign object damage in laser-shock peened aerofoils:Simulation and measurement[J]. Mechanics of Materials,2015,82:78-90. [29] 吴俊峰,邹世坤,张永康,等. 激光冲击强化TC17叶片前缘模拟件的抗FOD性能[J]. 稀有金属材料与工程,2018,47(11):3359-3364. WU Junfeng,ZOU Shikun,ZHANG Yongkang,et al. FOD resistance of the simulator samples of TC17 blades leading edges with laser shock processing[J]. Rare Metal Materials and Engineering,2018,47(11):3359-3364. [30] LUO S H,NIE X F,ZHOU L C,et al. High cycle fatigue performance in laser shock peened TC4 titanium alloys subjected to foreign object damage[J]. Journal of Materials Engineering and Performance,2018,27(3):1466-1474. [31] SPANRAD S,TONG J. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens[J]. Materials Science & Engineering A,2011,528(4-5):2128-2136. [32] YANG Y,ZHOU W F,CHEN B Q,et al. Fatigue behaviors of foreign object damaged Ti-6Al-4V alloys under laser shock peening[J]. International Journal of Fatigue,2020,136:105596. [33] REN X D,CHEN B Q,JIAO J F,et al. Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage[J]. Optics & Lasers Technology,2020,121:105784. [34] RUSCHAU J J,JOHN R,THOMPSON S R,et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium[J]. International Journal of Fatigue,1999,21:199-209. [35] SPANRAD S. Fatigue crack growth in laser shock peened aerofoils subjected to foreign object damage[D]. Portsmouth:University of Portsmouth,2011. [36] CELLARD C,RETRAINT D,FRANCOIS M,et al. Laser shock peening of Ti-17 titanium alloy:Influence of process parameters[J]. Materials Science and Engineering A,2012,532:362-372. [37] 乔红超,高宇,赵吉宾,等. 激光冲击强化技术的研究进展[J]. 中国有色金属学报,2015,25(7):1744-1755. QIAO Hongchao,GAO Yu,ZHAO Jibin,et al. Research process of laser peening technology[J]. The Chinese Journal of Nonferrous Metals,2015,25(7):1744-1755. [38] 邹世坤,巩水利,郭恩明,等. 发动机整体叶盘的激光冲击强化技术[J]. 中国激光,2011,38(6):0601009. ZOU Shikun,GONG Shuili,GUO Enming,et al. Laser peening of turbine engineering integrally blade rotor[J]. Chinese Journal of Lasers,2011,38(6):0601009. [39] SAE International. AMS 2546-2004(R2010),Laser peening[S]. Warrendale:SAE Press,2004. [40] ZHOU Z,GILL A S,TELANG A,et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 spf superalloy[J]. Experimental Mechanics,2014,54(9):1597-1611. [41] ZHOU W F,REN X D,REN Y P,et al. Laser shock processing on Ni-based superalloy K417 and its effect on thermal relaxation of residual stress[J]. The International Journal of Advanced Manufacturing Technology,2017,88(1):675-681. [42] PREVÉY P. The effect of cold work on the thermal stability of residual compression in surface enhanced IN718[C]//Proceeding of 20th ASM Materials Solutions Conference & Exposition,Missouri:ASM Press,2000. [43] 李玉琴,何卫锋,聂祥樊,等. GH4133镍基高温合金激光冲击强化研究[J]. 稀有金属材料与工程,2015,44(6):1517-1521. LI Yuqin,HE Weifeng,NIE Xiangfan,et al. Laser shock peening of GH4133 nickel-based superalloy[J]. Rare Metal Materials and Engineering,2015,44(6):1517-1521. [44] 周磊,李应红,汪诚,等. 激光冲击强化渗铝法提高K417合金疲劳性能[J]. 稀有金属材料与工程,2011,40(6):1093-1096. ZHOU Lei,LI Yinghong,WANG Cheng,et al. Vibration fatigue performance improvement of K417 alloy by laser shock processing and aluminizing[J]. Rare Metal Materials and Engineering,2011,40(6):1093-1096. [45] LI Y H,ZHOU L C,HE W F,et al. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures[J]. Science & Technology of Advanced Materials,2013,14(5):1574-1578. [46] LUO S H,NIE X F,ZHOU L C,et al. Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy[J]. Surface & Coating Technology,2017,311:337-343. [47] LUO S H,NIE X F,WANG X D,et al. Experiment study on improving fatigue strength of K24 nickel based alloy by laser shock processing without coating[J]. Rare Metal Materials and Engineering,2017,46(12):3682-3687. [48] NIE X F,LI Y H,TU S D,et al. Feasibility study of microscale laser shock processing without absorbing coating to improve high-cycle fatigue performance of DZ17G directionally solidified superalloy[J]. Journal of Laser Applications,2019,31:042007. [49] CHASWAL V. A study of laser shock peening on fatigue behavior of IN718Plus superalloy:Simulations and experiments[D]. Cincinnati:University of Cincinnati,2013. [50] LU G X,LIU J D,QIAO H C,et al. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy[J]. Materials Science and Engineering A,2017,686:46-53. [51] LU G X,LIU J D,QIAO H C,et al. Surface topography evolution of Ni-based single crystal superalloy under laser shock:Formation of the nano-scale surface reliefs[J]. Applied Physics A,2017,123(3):213. [52] LU G X,LIU J D,QIAO H C,et al. Crack appearance of a laser shock-treated single crystal nickel-base superalloy after isothermal fatigue failure[J]. Surface and Coatings Technology,2017,321:74-80. [53] 周留成. 激光冲击复合强化机理及在航空发动机涡轮叶片上的应用研究[D]. 西安:空军工程大学,2014. ZHOU Liucheng. The strengthening mechanism of laser shock processing and its application on the aero-engine components[D]. Xi'an:Air Force Engineering University,2014. [54] CHEN C,ZHANG X Y,YAN X J,et al. Effect of laser shock peening on combined low-and high-cycle fatigue life of casting and forging turbine blades[J]. Journal of Iron and Steel Research International,2018,25:108-119. [55] LU G X,LIU J D,QIAO H C,et al. Nonuniformity of morphology and mechanical properties on the surface of single crystal superalloy subjected to laser shock peening[J]. Journal of Alloys and Compounds,2016,658:721-725. [56] GENG Y X,DONG X,WANG K D,et al. Evolutions of microstructure,phase,microhardness,and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure[J]. Optics & Laser Technology,2020,123:105917. [57] 汪诚,任旭东,周鑫,等. 激光冲击对GH742镍基合金疲劳短裂纹扩展的影响[J]. 金属热处理,2009,34(7):57-60. WANG Cheng,REN Xudong,ZHOU Xin,et al. Influence of laser shock processing on short crack growth of GH742 nickel-base alloy[J]. Heat Treatment of Metals,2009,34(7):57-60. [58] 何卫锋,李应红,周章文,等. 激光冲击工艺对GH742镍基高温合金疲劳性能的影响[J]. 材料热处理学报,2009,30(3):42-45. HE Weifeng,LI Yinghong,ZHOU Zhangwen,et al. Effects of laser shock processing on fatigue property of GH742 Ni-based superalloy[J]. Transactions of Materials and Heat Treatment,2009,30(3):42-45. [59] 陈旭,崔海涛,田增,等. 激光冲击强化对钛合金高温微动疲劳寿命的影响[J]. 推进技术,2020,41(4):903-909. CHEN Xu,CUI Haitao,TIAN Zeng,et al. Effects of laser shock peening on high-temperature fretting fatigue life of titanium alloy[J]. Journal of Propulsion Technology,2020,41(4):903-909. [60] CHU J P,RIGSBEE J M,BANAŚ G,et al. Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J]. Materials Science & Engineering A,1999,260(1-2):260-268. [61] LU J Z,LUO K Y,ZHANG Y K,et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia,2010,16:5354-5362. [62] LU J Z,LUO K Y,ZHANG Y K,et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia,2010,11:3984-3994. [63] 李应红. 激光冲击强化理论与技术[M]. 北京:科学出版社,2013. LI Yinghong. Theory and technology of laser shock peening[M]. Beijing:Science Press,2013. [64] Che Z G,Yang J,Gong S L,et al. Self-nanocrystallization of Ti-6Al-4V alloy surface induced by laser shock processing[J]. Rare Metal Materials and Engineering,2014,33(5):1056-1060. [65] ZHOU L C,HE W F,LUO S H,et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel[J]. Journal of Alloys and compounds,2015,655:66-70. [66] LUO S H,LI Y H,Zhou L C,et al. Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials & Design,2016,104:320-326. [67] LU J Z,DUAN H F,LUO K Y,et al. Tensile properties and surface nanocrystallization analyses of H62 brass subjected to room-temperature and warm laser shock peening[J]. Journal of Alloys and Compounds,2017,698:633-642. [68] LU J Z,WU L J,SUN G F,et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia,2017,127:252-266. [69] LUO S H,ZHOU L C,WANG X D,et al. Surface nanocrystallization and amorphization of dual phase TC11titanium alloys under laser induced ultrahigh strain-rate plastic deformation[J]. Materials,2018,11:563. [70] 李应红,何卫锋,周留成. 激光冲击复合强化机理及在航空发动机涡轮叶片上的应用研究[J]. 中国科学:技术科学,2015,45(1):1-8. LI Yinghong,HE Weifeng,ZHOU Liucheng. The strengthening mechanism of laser shock processing and its application on the aero-engine components[J]. SCIENTIA SINICA Technologica,2015,45(1):1-8. [71] QIAO H C. Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications[J]. Applied Surface Science,2015,351:524-530. [72] KATTOURA M,MANNAVA S R,QIAN D,et al. Effect of laser shock peening on elevated temperature residual stress,microstructure and fatigue behavior of ATI 718Plus alloy[J]. International Journal of Fatigue,2017,104:366-378. [73] ZOU S K,WU J F,ZHANG Y K,et al. Surface integrity and fatigue lives of Ti17 compressor blades subjected to laser shock peening with square spots[J]. Surface and Coatings Technology,2018,347:398-406. [74] ZHOU L C,LONG C B,HE W F,et al. Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization[J]. Journal of Alloys and Compounds,2018,744:156-164. [75] SHENG J,ZHANG H,HU X Q,et al. Influence of laser peening on the high-temperature fatigue life and fracture of Inconel 718 nickel-based alloy[J]. Theoretical and Applied Fracture Mechanics,2020,109:102757. [76] WU Junfeng,ZOU Shikun,ZHANG Yongkang,et al. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening[J]. Surface and Coatings Technology,2017,328:283-291. [77] LUO S H,ZHOU L C,NIE X F,et al. The compound process of laser shock peening and vibratory finishing and its effect on fatigue strength of Ti-3.5Mo-6.5Al-1.5Zr-0.25Si titanium alloy[J]. Journal of Alloys and Compounds,2019,783:828-835. [78] 李靖,李军,何卫锋,等. 激光冲击与渗碳复合工艺改善12CrNi3A钢磨损性能[J]. 强激光与粒子束,2014,26(5):059005. LI Jing,LI Jun,HE Weifeng,et al. Improvement of wear resistance by laser shock processing and carburization composite technology used on 12CrNi3A steel[J]. High Power Laser and Particle Beams,2014,26(5):059005. [79] LUO S H,HE W F,ZHOU L C,et al. Aluminizing mechanism on a nickel-based alloy with surface nanostructure produced by laser shock peening and its effect on fatigue strength[J]. Surface and Coatings Technology,2018,342:29-36. [80] KALAINATHAN S,PRABHAKARAN S. Recent development and future perspectives of low energy laser shock peening[J]. Optics & Laser Technology,2016,81:137-144. [81] WANG H,KALCHEVB Y WANG H C,et al. Surface modification of NiTi alloy by ultrashort pulsed laser shock peening[J]. Surface and Coatings Technology,2020,394:125899. [82] WANG H,GUREVICH E L,OSTENDORF A. Femtosecond laser shock peening on the surface of NiTi shape memory alloy[J]. Procedia CIRP,2020,94:910-913. [83] ELANGO K,HOPPIUS J S,KUKREJ L M,et al. Studies on ultra-short pulsed laser shock peening of stainless-steel in different confinement media[J]. Surface and Coatings Technology,2020,397:125988. [84] PETRONIĆ S,ČOLIĆ K,ĐORĐEVIĆ B,et al. Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy[J]. Optics and Lasers in Engineering,2020,129:106052. [85] KALENTICS N,BOILLAT E,PEYRE P,et al. 3D laser shock peening-A new method for the 3D control of residual stresses in selective laser melting[J]. Materials & Design,2017,130:350-356. [86] KALENTICS N,SOHRABI N,TABASI H G,et al. Healing cracks in selective laser melting by 3D laser shock peening[J]. Additive Manufacturing,2019,30:100881. [87] KALENTICS N,SEIJAS M O V,GRIFFITHS S,et al. 3D laser shock peening-a new method for improving fatigue properties of selective laser melted parts[J]. Additive Manufacturing,2020,33:101112. [88] GUO W,SUN R J,SONG B W,et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface & Coatings Technology,2018,349:503-510. [89] JIN X,LAN L,GAO S,et al. Effects of laser shock peening on microstructure and fatigue behavior of Ti-6Al-4V alloy fabricated via electron beam melting[J]. Materials Science & Engineering A,2020,780:139199. [90] LUO S H,HE W F,CHEN K,et al. Regain the fatigue strength of laser additive manufactured Ti alloy via laser shock peening[J]. Journal of Alloys and Compounds,2018,750:626-635. |
[1] | 赵峻林, 乔百杰, 罗现强, 符顺国, 程昊, 王亚南, 陈雪峰. 基于单传感器测量的多模态叶片动应力场预测[J]. 机械工程学报, 2024, 60(16): 19-33. |
[2] | 刘帅, 王伟, 白杰, 戴士杰. 面向控制规律设计的民用航空发动机建模方法研究[J]. 机械工程学报, 2024, 60(16): 222-230. |
[3] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[4] | 余晓霞, 汤宝平, 魏静, 张志刚. 大转数波动条件下机理约束图权重增强网络的航空发动机附件机匣故障诊断方法[J]. 机械工程学报, 2024, 60(12): 126-136. |
[5] | 张禹, 范志刚, 于润泽, 石可, 鹿浩, 张明, 巩亚东. 基于Steiner最小树和改进多目标萤火虫算法的航空发动机分支管路自动布局[J]. 机械工程学报, 2024, 60(12): 365-372. |
[6] | 马吉良, 彭军, 郭艳婕, 陈雪峰. 爬壁机器人研究现状及发展趋势[J]. 机械工程学报, 2023, 59(5): 11-28. |
[7] | 杨兆军, 何佳龙, 刘志峰, 李国发, 陈传海. 数控机床可靠性技术新进展[J]. 机械工程学报, 2023, 59(19): 152-163. |
[8] | 刘伟, 刘顺, 邓朝晖, 葛吉民. 工业机器人定位误差补偿技术研究进展[J]. 机械工程学报, 2023, 59(17): 1-16. |
[9] | 石嵩, 刘检华, 巩浩, 邵楠. 考虑粗糙表面接触配合的航空发动机多级转子装配误差传递建模[J]. 机械工程学报, 2023, 59(17): 208-219. |
[10] | 梅雪松, 孙涛, 赵万芹, 凡正杰, 张涛, 唐程, 崔健磊, 王文君. 光学相干成像技术在激光加工过程实时监测与控制中的应用研究进展[J]. 机械工程学报, 2023, 59(15): 216-231. |
[11] | 张禹, 公健, 唐滋阳, 吕董, 常育嘉, 巩亚东. 基于改进多目标人工蜂群算法的航空发动机管路智能布局方法[J]. 机械工程学报, 2022, 58(4): 277-284. |
[12] | 赵新玉, 李鹏飞, 段晓敏, 张斌. 曲面工件自动超声检测轨迹规划[J]. 机械工程学报, 2022, 58(24): 41-48. |
[13] | 刘静, 党晓勇, 唐昌柯, 李鑫斌, 庞瑞坤. 航空发动机传动轴承多支承台架试验失效机理分析[J]. 机械工程学报, 2021, 57(23): 116-123. |
[14] | 柳强, 刘贝贝, 于嘉鹏, 马辉, 贾铎, 唐志. 考虑双联卡箍约束的航空发动机多管成束敷设优化方法[J]. 机械工程学报, 2021, 57(19): 218-229. |
[15] | 王苹, 裴宪军, 钱宏亮, DONG Pingsha. 焊接结构抗疲劳设计新方法与应用[J]. 机械工程学报, 2021, 57(16): 349-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||