[1] 李东方, 陈继民, 袁艳萍, 等. 光固化快速成型技术的进展及应用[J]. 北京工业大学学报, 2015, 41(12):1769-1774. LI Dongfang, CHEN Jimin, YUAN Yanping, et al. Development and application of stereo lithography apparatus[J]. Journal of Beijing University of Technology, 2015, 41(12):1769-1774. [2] 邵中魁, 姜耀林. 光固化3D打印关键技术研究[J]. 机电工程, 2015, 32(2):180-184. SHAO Zhongkui, JIANG Yaolin. Key technologies of SLA 3D printing[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(2):180-184. [3] KIM G D, OH Y T. A benchmark study on rapid prototyping processes and machines:Quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2008, 222(2):201-215. [4] MOHAN P P, VENKATA R N, DHANDE S G. Slicing procedures in layered manufacturing:A review[J]. Rapid Prototyping Journal, 2003, 9(5):274-288. [5] CHEAH C M, FUH J Y H, NEE A Y C, et al. Characteristics of photopolymeric material used in rapid prototypes Part II. Mechanical properties at post-cured state[J]. Journal of Materials Processing Technology, 1997, 67(1):46-49. [6] CHOCKALINGAM K, JAWAHAR N, CHANDRA-SEKHAR U. Influence of layer thickness on mechanical properties in stereolithography[J]. Rapid Prototyping Journal, 2006, 12(2):106-113. [7] OROPALLO W, PIEGL L A. Ten challenges in 3D printing[J]. Engineering with Computers, 2016, 32(1):135-148. [8] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347:1349-1352. [9] TARBOX T N, WATTS A B, CUI Z, et al. An update on coating/manufacturing techniques of microneedles[J]. Drug Delivery and Translational Research, 2018, 8(6):1828-1843. [10] BLOOMQUIST C J, MECHAM M B, PARADZINSKY M D, et al. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins[J]. Journal of Controlled Release, 2018, 278:9-23. [11] DENG X, HUANG B, HU R, et al. 3D printing of robust and biocompatible poly(ethylene glycol) diacrylate/nano-hydroxyapatite composites via continuous liquid interface production[J]. Journal of Materials Chemistry B, 2021, 9(5):1315-1324. [12] HUANG B, HU R, XUE Z, et al. Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties[J]. Carbohydrate Polymers, 2020, 231:115736. [13] JANUSZIEWICZ R, TUMBLESTON J R, QUINTANILLA A L, et al. Layerless fabrication with continuous liquid interface production[J]. Proceedings of the National Academy of Sciences, 2016, 113:11703-11708. [14] CAUDILL C L, PERRY J L, TIAN S, et al. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery[J]. Journal of Controlled Release, 2018, 284:122-132. [15] DENDUKURI D, PANDA P, HAGHGOOIE R, et al. Modeling of oxygen-Inhibited free radical photopolymerization in a PDMS microfluidic device[J]. Macromolecules, 2008, 41(22):8547-8556. [16] O'BRIEN A K, BOWMAN C N. Modeling the effect of oxygen on photopolymerization kinetics[J]. Macromolecular Theory and Simulations, 2006, 15(2):176-182. [17] JOHNSON A R, CAUDILL C L, TUMBLESTON J R, et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production[J]. Plos One, 2016, 11(9):e0162518. |